What is...the Abel-Ruffini theorem?

Or: Loops and roots

Polynomials of degree 1 and arithmetic

b•

-Origin

Root•

$$
X+b
$$

- The operations of arithmetic,,$+- \times, \div$ suffice to solve polynomial equations of degree 1 :

$$
\text { roots }=-b
$$

- Suffice $=$ potentially iterated combinations of symbols from,,$+- \times, \div$ and coefficients of $a \cdot X+b$
- Question How far can we push this using only the operations of arithmetic?

Polynomials of degree 2 and arithmetic

- Looping b around blue points exchanges the roots
- Looping b around blue points fixes the coefficients
- Square roots can not be defined using the operations of arithmetic:

There is no quadratic formula built out of a finite combination of,,$+- \times, \div$

$$
X^{3}+b \cdot X+1
$$

- The commutator $[a, b]=a b a^{-1} b^{-1}$ of loops shows that nesting $\sqrt[n]{-}$ for $n>2$ is necessary, but that is an operation of algebra
- Allowing the new operation $\sqrt[n]{-}$ solves the problem:

$$
\text { roots }=\frac{1}{2 a}\left(-b \pm \sqrt[2]{b^{2}-4 a c}\right) \text { degree } 2
$$

degrees 3,4 were done around 1500 , but are "ugly"

- Question

How far can we push this using only the operations of algebra?

Enter, the theorem and proof

For degree 5 and bigger the operations of algebra do not suffice

- Non-trivial k-commutator-loops describe how often $\sqrt[n]{-}$ needs to be nested e.g.:

$$
\begin{gathered}
\quad[[(12),(23)],[(23),(34)]]=(14)(23) \\
\Rightarrow \\
\text { degree } \geq 4 \text { needs at least 2-nesting stages }
\end{gathered}
$$

- k-commutator-loops can be arbitrary nested for degree ≥ 5 :

$$
[(i j k),(k / m)]=(j k m)
$$

Needs five symbols!

- No degree ≥ 5 solution formula using finite nested expressions

What the Abel-Ruffini theorem not implies

- Algebraic solutions Certain equation can be solved e.g.

$$
\left(X^{5}-1=0\right) \Leftrightarrow\left(X=e^{k \cdot 2 \pi i / 5}, k \in\{0,1,2,3,4\}\right)
$$

- Analytic solutions Using infinitely nested $\sqrt[n]{-}$ one can write down formulas for roots, e.g.

$$
\begin{aligned}
& \sqrt[2]{1+\sqrt[2]{1+\sqrt[2]{1+\sqrt[2]{1+\cdots}}}} \xrightarrow{\text { converges }} \text { a solution of } X^{2}-X-1 \\
& \cdots \\
& \sqrt[5]{1+\sqrt[5]{1+\sqrt[5]{1+\sqrt[5]{1+\cdots}}}} \xrightarrow{\text { converges }} \text { a solution of } X^{5}-X-1 \\
& \cdots \\
& \sqrt[n]{1+\sqrt[n]{1+\sqrt[n]{1+\sqrt[n]{1+\cdots}}}} \xrightarrow{\text { converges }} \text { a solution of } X^{n}-X-1
\end{aligned}
$$

Thank you for your attention!

I hope that was of some help. $X^{5}-X-1$

