What is...the finite Kakeya problem?

Or: A finite filling

The classical Kakeya problem

Start:

Finish:

- Kakeya's problem What is a minimum area of a region D in the plane, in which a needle of unit length can be turned through 180 degree?
- If D is assumed to be convex, then D is an equilateral triangle Relatively easy
- In general, the area of D can be arbitrary small Strange
- A Kakeya set $K \subset \mathbb{R}^{n}$ is a set such that a unit line segment can be rotated continuously through 180 degrees within it

Kakeya sets can have arbitrary

$$
\text { small volume }>0
$$

- A Besicovitch set $B \subset \mathbb{R}^{n}$ contains a unit line segment in every direction

The Hausdorff dimension hd is a measure of how space filling an object is, e.g.

Conjecture reformulated B may have volume zero, but still fills space

Enter, the theorem

A finite Besicovitch set B is a subset of \mathbb{F}_{q}^{n} for a finite field \mathbb{F}_{q} of order $\left|\mathbb{F}_{q}\right|=q$ that contains a line in every direction, i.e.

$$
\forall x \in \mathbb{F}_{q}^{n} \exists y \in \mathbb{F}_{q}^{n}: L=\left\{y+a \cdot x \mid a \in \mathbb{F}_{q}\right\} \subset B
$$

Finite Kakeya conjecture Is there a constant c, only depending on n, such that every B satisfies

$$
|B| \geq c q^{n} ?
$$

- Theorem (Dvir) ~2008. The conjecture is true
- The proof uses only combinatorics of polynomials and is short
- The original Kakeya conjecture is (wildly) open (in 2021)

A glimpse at the proof

- Lemma 1 (Schwartz-Zippel). Every non-zero polynomial $f \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ of degree d has at most $d q^{n-1}$ roots in \mathbb{F}_{q}^{n}
- Lemma 2. For every set $E \subset \mathbb{F}_{q}^{n}$ of size $|E|<\binom{n+d}{d}$ there is a non-zero polynomial $f \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ of degree at most d that vanishes on E

These are generalizations of the well-known facts:

- Lemma 1'. Every polynomial of degree d in one variable has at most d roots

$$
\text { worst-case: } f=\left(X-a_{1}\right) \ldots\left(X-a_{d}\right)
$$

- Lemma 2'. For every set $E=\left\{a_{1}, \ldots, a_{r}\right\} \subset \mathbb{F}_{q}$ of size $|E| \leq d$ there is a non-zero polynomial of degree at most d that vanishes on E

$$
\text { take: } f=\left(X-a_{1}\right) \ldots\left(X-a_{r}\right)
$$

Thank you for your attention!

I hope that was of some help.

