What is...Pick's theorem?

Or: Surprisingly simple

- A square P with corners on \mathbb{Z}^{2}
- Side length is 6 so area $(P)=36$
- Note that $\operatorname{area}(P)=\# B / 2+\# I-1=24 / 2+25-1$, where B are the boundary points and I the interior points on \mathbb{Z}^{2}

Come on, this is obvious

The area of another square

- A square P with corners on \mathbb{Z}^{2}
- Side length is $\sqrt{18}$ so $\operatorname{area}(P)=18$
- Note that $\operatorname{area}(P)=\# B / 2+\# I-1=12 / 2+13-1$, where B are the boundary points and $/$ the interior points on \mathbb{Z}^{2}

Boring!

The area of a strange polygon

- A deformed 7 -gon P with corners on \mathbb{Z}^{2}
- The computer tells me that area $(P)=16$
- Note that $\operatorname{area}(P)=\# B / 2+\# I-1=16 / 2+7-1$, where B are the boundary points and I the interior points on \mathbb{Z}^{2}

Wait, what?

Enter, the theorem

P a simple polygon with integer coordinates for all of its vertices has area

$$
\operatorname{area}(P)=\# B / 2+\# I-1
$$

where B are the boundary points and I the interior points on \mathbb{Z}^{2}

- Simple means that P bounds a disk without self-intersection
- Pick's theorem is wrong if we drop the conditions, e.g.

has area 18 , but $\# B / 2+\# I-1=37 / 2$

Many proofs

- Pick's theorem has many proofs - as soon as you know what to prove it is not so hard
- A famous proof uses Euler's polyhedron formula $V-E+F=1$ and the (easy) fact that triangles on \mathbb{Z}^{2} with $\# I=0$ are always of area $1 / 2$

Thank you for your attention!

I hope that was of some help.

