> What is...Kneser's conjecture?

Or: Coloring and topology

Sets and (Kneser) graphs

- $K(n, k)$ - vertices k-element subsets of $\{1, \ldots, n\}$, edges between $A \cap B=\emptyset$
- $K(n, 1)$ is the complete graph with n vertices
- $K(n, k)$ is edge-less for $n<2 k$ so we always assume $n \geq 2 k$

Coloring $K(n, k)$

Problem. What is the smallest $\chi(n, k)$ such that the vertices of $K(n, k)$ can be partitioned into $V_{1} \dot{\cup} \ldots \dot{U} V_{\chi}$ of intersecting family of k-sets V_{i} ?

Kneser's conjecture (Aufgabe 360). $\chi(2 k+d, k)=d+2$

Proof that $\chi(2 k+d, k) \leq d+2$

- For $i=1, \ldots, d+1$ take $V_{i}=k$-sets with minimal element i
- For $i=d+2$ combine all remaining sets to V_{d+2}

Enter, the theorem

Kneser's conjecture holds
The first proof 23 years after Kneser stated the conjecture used the following version of the Borsuk-Ulam theorem

Theorem (Lyusternik-Shnirel'man). If the sphere S^{d+1} is covered by $d+2$ sets

$$
S^{d+1}=\bigcup_{i=1}^{d+1} U_{i} \cup C
$$

with U_{i} open, then one of the U_{i} or C contains an antipodal pair $x^{*},-x^{*}$

Proof that $\chi(2 k+d, k) \geq d+2$

- Take $2 k+d$ points in general position on S^{d+1}
- Assume that we have partition $V_{1} \cup \dot{\cup} . . \cup \dot{U} V_{d+1}$
- Define open sets $O_{i}=\left\{x \in S^{d+1} \mid\right.$ the open hemisphere H_{x} with pole x contains a k-set from $\left.V_{i}\right\}$
- Borsuk-Ulam theorem \Rightarrow some O_{i} contains antipodal points x, x^{*}
- Thus, we get two sets A, B in V_{i} which are disjoint

Thank you for your attention!

I hope that was of some help.

