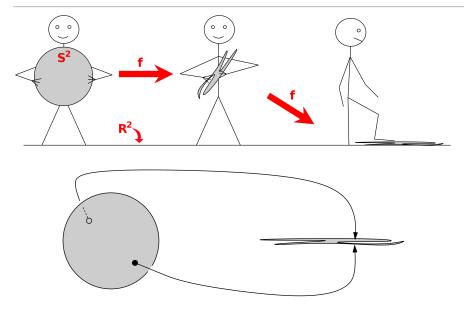
What are...incarnations of the Borsuk–Ulam theorem?

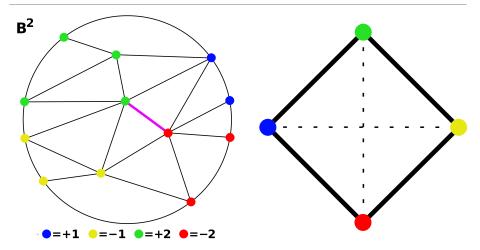
Or: Topology or combinatorics or ...?

Borsuk–Ulam topologically

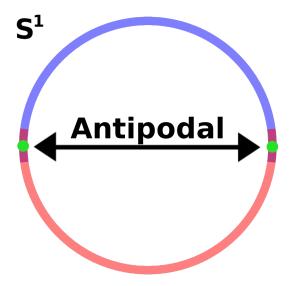


For every continues map $f \colon S^n \to \mathbb{R}^n \exists x \colon f(x) = f(-x)$ Topology

Borsuk–Ulam combinatorially



Antipodally triangulate B^n , label vertices $\{\pm 1, ..., \pm n\}$ in antipodal-symmetric fashion, then \exists edge with vertices labeled (x, -x) Combinatorics



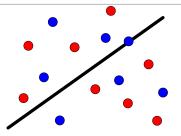
Open covering $S^n = \bigcup_{i=0}^n U_i$, then at least one U_i contains some x, -x Covering

The following are equivalent and true

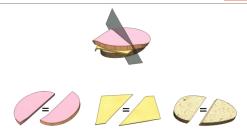
- (a) For every continues map $f: S^n \to \mathbb{R}^n \exists x: f(x) = f(-x)$ Topology
- (a') For every antipodal map $f: S^n \to \mathbb{R}^n$ (*i.e.* continues and f(-x) = -f(x)) $\exists x: f(x) = 0$
- (A) There is no antipodal map $f: S^n \to S^{n-1}$
- (A') There is no continues map $f: B^n \to S^{n-1}$ that is antipodal on the boundary
- (b) Antipodally triangulate Bⁿ, label vertices {±1,...,±n} in antipodal-symmetric fashion, then ∃ edge with vertices labeled (x, -x)
- (c) Open covering $S^n = \bigcup_{i=0}^n U_i$, then at least one U_i contains some (x, -x)Covering

(a), (a'), (A), (A') are due to Borsuk (conjectured by Ulam), (b) is Tucker's lemma, (c) is the Lyusternik–Shnirel'man theorem

Ham sandwiches



For a finite set of blue or red colored points in \mathbb{R}^2 there is a line that simultaneously bisects the red points and bisects the blue points Combinatorics



n measurable sets in \mathbb{R}^n can be divided in half by one single hyperplane Covering

Thank you for your attention!

I hope that was of some help.