What is...the Brouwer fixed point theorem?

Or: Why lines need to cross.

From a 1d disk into a 1d disk

Put a colored string into a background of the same color code:

Fun observation. At least one point is fixed, i.e. of the same color as its background

The intermediate value theorem

If $f:[a, b] \rightarrow[f(a), f(b)]$, and $c \in[f(a), f(b)]$, then there is at least one $x \in[f(a), f(b)]$ such that $f(x)=c$

Wait: This c is a fixed point, namely of $f(x)-x+c$

Sperner's lemma

Crossing only red-green edges, you always get stuck in a tricolored triangle

The rule to create these: The outside triangle has three colors, the edges on the boundary the colors of the outside points - the middle is arbitrary.

A fixed point, namely of $f(x)-x$ (by repeating the process for the end triangle)

Enter, the theorem!

Any continuous function f sending a compact convex set onto itself contains at least one fixed point.

Compact convex sets:

- An interval
- A disk
- A triangle
- A ball
- A filled cube

From a 2d disk into a 2d disk

Brouwer's fixed point on a map: the "You are here" marker

Why? Well, a map is a disk mapped into a disk, its location

Thank you for your attention!

I hope that was of some help.

