What is...Heawood's conjecture?

Or: I need more than four colors

- Four colors suffice: every planar graph is four-colorable
- Conjectured by Francis Guthrie ~1852 (counties of England)
- Open for more than 100 years; known proofs are complicated

The Heawood conjecture is a generalization with a much simpler proof Strange

Seven instead of four

Heawood ~ 1890. The same question on a torus needs 7 colors!

- Step ($g=0$ easy, $g>0$ hard $)$. Find a lower bound by constructing a graph, e.g.

- Step ($g=0$ too big, $g>0$ works). Find an upper bound a Euler characteristic type argument, e.g.

Every vertex has degree at most 5 Remove such a vertex v Inductively color the rest using 6 colors Add v - there is at least one free color

Enter, the theorem

c colors suffice: every planar graph on a genus g surface is c-colorable where

$$
c=\left\lfloor\frac{1}{2}(7+\sqrt{1+48 g})\right\rfloor
$$

- The sequence reads

g	0	1	2	3	4	5	6	7	8	9	10
c	4	7	8	9	10	11	12	12	13	13	14

- Lower bound for $g=0$ is clear; lower bound for $g>0$ took a while
- Upper bound for $g=0$ took a while; lower bound is due to Heawood
- If one replaces g by the Euler characteristic χ, then

$$
c=\left\lfloor\frac{1}{2}(7+\sqrt{49-24 \chi})\right\rfloor
$$

is the formula

- The above works for non-orientable surfaces except the Klein bottle

What about non-orientable surfaces?

For non-orientable surfaces the formula remains true except for the Klein bottle:

- Heawood's formula predicts seven colors
- The Franklin graph needs only six
- This is a funny small number coincidence

Thank you for your attention!

I hope that was of some help.

