What are...Gröbner bases?

Or: Minimal intersections

The same intersection set in two different ways

Question. How can we algebraically see that the intersections match?

$$
\left(X^{2}-Y^{2}, X^{3}-Y^{2}-1\right) \stackrel{?}{=}\left(Y^{6}-Y^{4}-2 Y^{2}-1, X-Y^{4}+Y^{2}+1\right)
$$

I like $X>Y>Z$

Lexicographical ordering:

$$
\begin{aligned}
f & =X Y^{3} Z^{5}+X^{2} Y^{6}+X^{4} Y Z+Y^{2} Z^{5}+Y Z^{4}+Y^{3}+Z^{3}+X Y+X Z+Z^{2}+Z \\
& =X^{4}(Y Z) \\
& +X^{2}\left(Y^{6}\right) \\
& +X^{1}\left(\begin{array}{c}
Y^{3}\left(Z^{5}\right) \\
+Y^{1}(1) \\
+Y^{0}(Z)
\end{array}\right) \\
& +\left(\begin{array}{c}
Y^{3}(1) \\
+Y^{2}\left(Z^{5}\right) \\
+Y^{1}\left(Z^{4}\right) \\
+Y^{0}\left(\begin{array}{r}
Z^{3}(1) \\
+Z^{2}(1) \\
+Z^{1}(1)
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

Buchberger's algorithm

Data: Ideal $H=\left(h_{1}, \ldots, h_{s}\right)$
Result: Gröbner basis $G=\left(g_{1}, \ldots, g_{t}\right)$
init $G=H, G^{\prime}=\emptyset$;
while $G \neq G^{\prime}$ do
$G^{\prime}=G$;
for $p, q \in G^{\prime}, p \neq q$ do

$$
s=\operatorname{red}\left(S(p, q), G^{\prime}\right)
$$

if $s \neq 0$ then
$G=G \cup\{s\} ;$
end
end
end

- $L T(p)=$ leading terms with respect to $<$ My fixed ordering (important!)
- lcm $=$ least common multiple
- $S(p, q)=\frac{\operatorname{lcm}(L T(p), L T(q))}{L T(p)} p-\frac{\operatorname{lcm}(L T(p), L T(q))}{L T(q)} q$
- $\operatorname{red}\left(S(p, q), G^{\prime}\right)$ reduce $S(p, q) \bmod G^{\prime}$

Enter, the theorem

A generating set $G=\left(g_{1}, \ldots, g_{t}\right)$ of an ideal I is a Gröbner basis if:

$$
\text { for any } p \in I \backslash\{0\} \text { there exists } g_{i} \text { such that } L T\left(g_{i}\right) \mid p
$$

G is reduced if the coefficients of $L T\left(g_{i}\right)$ is 1 and no monomial of the g_{i} is in the ideal generated by $L T\left(g_{j}\right)$ for $i \neq j$
(a) Buchberger's algorithm constructs a Gröbner basis Existence
(b) Reduced Gröbner bases characterize ideals Uniqueness

Gröbner theory is widely applicable :

- Applications in computer sciences
- Applications in graph theory
- Applications in theorem proving

Reduce the complexity!
GroebnerBasis[\{ $\left.\left.X^{\wedge} 2+Y^{\wedge} 3-1, X-Y^{\wedge} 2-X * Y\right\},\{X, Y\}\right]$ $\left\{-1+2 Y-Y^{2}+Y^{3}-Y^{4}+Y^{5},-1+X+Y-Y^{2}-Y^{4}\right\}$

$$
\left\{\begin{array} { c }
{ X ^ { 2 } + Y ^ { 3 } - 1 = 0 } \\
{ - X Y + X - Y ^ { 2 } = 0 }
\end{array} \rightsquigarrow \left\{\begin{array}{l}
Y^{5}-Y^{4}+Y^{3}-Y^{2}+2 Y-1=0 \text { Only in } Y \\
X-Y^{4}-Y^{2}+Y-1=0 \text { Trivial for fixed } Y
\end{array}\right.\right.
$$

Gröbner theory can reduce the complexity by a lot

Thank you for your attention!

I hope that was of some help.

