What is...the art of locating roots?

Or: Finding roots without finding them

The fundamental theorem of algebra

$$
\left|3.543 x^{7}-0.743 x^{6}+3.329 x^{5}-1.814 x^{4}+x^{3}-6 x^{2}+4 x-2\right|
$$

Every polynomial has complex roots, but calculating roots is hard Question. How can one avoid calculations?

If $|(f(z)+g(z))-f(z)|<|f(z)|$ for all $z \in \delta C$, then f and $f+g$ have the same number of zeros in $C f$ dominates

Roots of $z^{\wedge} 5+a * z+b$

- $f=z^{5}, g=4 z+2$
- $|g(z)|<|f(z)|$ for all $|z|<2 f(2)=32$
- $f+g=z^{5}-4 z+2$ has all of its zeros in the disc of radius 2 Located!

Finding roots à la Eneström-Kakeya
$f=a_{n} \cdot z^{n}+\ldots+a_{0}$ with real $a_{n} \geq \ldots \geq a_{0} \geq 0$ Non-negative with order

- $f=10 \cdot z^{5}+9 \cdot z^{4}+8 \cdot z^{3}+8 \cdot z^{2}+2 \cdot z+1$
- $10 \geq 9 \geq 8 \geq 8 \geq 2 \geq 1$ Order!
- f has all of its zeros in the disc of radius 1 Located!

Enter, the theorems/philosophy!

Do not calculate roots - locate them!

Some examples

- Rouché With dominating f
- Original Eneström-Kakeya Non-negative with order
- Strengthened Eneström-Kakeya: f with coefficients $a_{j} \in \mathbb{R}_{\geq 0}$ has roots in an annulus $\min a_{j} / a_{j+1} \leq|z| \leq \max a_{j} / a_{j+1}$ Non-negative real
- Reversed Eneström-Kakeya: f with real $a_{0} \geq \ldots \geq a_{n} \geq 0$ has roots in $1 \leq|z|$ Non-negative with order
- Joyal-Labelle-Rahman: f with real $a_{0} \geq \ldots \geq a_{n}$ has roots in $|z| \leq\left(a_{n}-a_{0}+\left|a_{0}\right|\right) /\left|a_{n}\right|$ With order
- Many more formulas can be found in the link in the description

Rouché (green, $|z| \leq \max a_{i}+1$) vs. strengthened Eneström-Kakeya (blue)

$$
z^{5}+1.85 z^{4}+3 z^{3}+z^{2}+z+1
$$

$$
z^{5}+0.22 z^{4}+3 z^{3}+z^{2}+z+1
$$

The efficiency of location depends on the polynomial

Thank you for your attention!

I hope that was of some help.

