What is...the Schwartz-Zippel lemma?

Or: The art of not solving equations

Polynomial identity testing (PIT)

> Polynomial $f\left(x_{1}, \ldots, x_{n}\right)$, polynomial $g\left(x_{1}, \ldots, x_{n}\right)$
> Question. Is $f=g$? Equivalently, is $f-g=0$?

Problem 1. The polynomials might come in disguise

- $f=\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right), g=x_{1}^{2}-x_{2}^{2}$
- These are equal but one needs to factor f into monomials to see this

Problem 2. Factoring polynomials is costly

- $f=\prod_{i=1}^{n}\left(x_{i}+x_{i+1}\right)$ has length $O(n)$
- f expands into $O\left(2^{n}\right)$ monomials

A threshold for being a root

$$
f(x, y)=\prod_{i=0}^{d-1}(x+i \cdot y) \text { and its roots in } \mathbb{F}_{p}^{2}, \text { for } p=11, d=4:
$$

Left number: percentage of roots; right number: d / p

$$
f(x, y, z)=x^{d}+y^{d}+z^{d}+x+y+z+1 \text { and its roots in } \mathbb{F}_{p}^{3}, \text { for } p=11, d=4:
$$

Left number: percentage of roots; right number: d / p

Enter, the theorem!

(a) $f\left(x_{1}, \ldots, x_{n}\right)$ a degree $d>1$ polynomial with coefficients in some field \mathbb{K}
(b) $S \subset \mathbb{K}$
(c) $r_{1}, \ldots, r_{n} \in S$ chosen randomly

If f is non-zero, then $f\left(r_{1}, \ldots, r_{n}\right)=0$ holds with probability $\leq d /|S|$
The point is:

- Repeat k times, get $r_{1}^{k}, \ldots, r_{n}^{k}$
- The probability that $f\left(r_{1}^{k}, \ldots, r_{n}^{k}\right)=0$ always holds is $\leq(d /|S|)^{k}$
- For big S the value $(d /|S|)^{k}$ goes to zero
- If $f\left(r_{1}^{k}, \ldots, r_{n}^{k}\right)=0$ all the time, then it almost certainly is constant zero

Count matchings
det(Tutte matrix) $=\operatorname{det}\left(\left(\begin{array}{cccccccc}0 & x_{12} & 0 & x_{14} & x_{15} & 0 & 0 & 0 \\ -x_{12} & 0 & x_{23} & 0 & 0 & x_{26} & 0 & 0 \\ 0 & -x_{23} & 0 & x_{34} & 0 & 0 & x_{37} & 0 \\ -x_{14} & 0 & -x_{34} & 0 & 0 & 0 & 0 & x_{48} \\ -x_{15} & 0 & 0 & 0 & 0 & x_{56} & 0 & x_{58} \\ 0 & -x_{26} & 0 & 0 & -x_{56} & 0 & x_{67} & 0 \\ 0 & 0 & -x_{37} & 0 & 0 & -x_{67} & 0 & x_{78} \\ 0 & 0 & 0 & -x_{48} & -x_{58} & 0 & -x_{78} & 0\end{array}\right)\right)$

Fact. det(Tutte matrix) is zero if and only if there are no perfect matchings
We can check heuristically that the graph below has no perfect matching!

Thank you for your attention!

I hope that was of some help.

