## What is...the Schwartz–Zippel lemma?

Or: The art of not solving equations

Polynomial  $f(x_1, ..., x_n)$ , polynomial  $g(x_1, ..., x_n)$ Question. Is f = g? Equivalently, is f - g = 0?

Problem 1. The polynomials might come in disguise

• 
$$f = (x_1 - x_2)(x_1 + x_2), g = x_1^2 - x_2^2$$

 $\blacktriangleright$  These are equal but one needs to factor f into monomials to see this

Problem 2. Factoring polynomials is costly

- $f = \prod_{i=1}^{n} (x_i + x_{i+1})$  has length O(n)
- f expands into  $O(2^n)$  monomials

 $f(x,y) = \prod_{i=0}^{d-1} (x + i \cdot y)$  and its roots in  $\mathbb{F}_p^2$ , for p = 11, d = 4:



Left number: percentage of roots; right number: d/p

 $f(x, y, z) = x^d + y^d + z^d + x + y + z + 1$  and its roots in  $\mathbb{F}_p^3$ , for p = 11, d = 4:



Left number: percentage of roots; right number: c



(a) f(x<sub>1</sub>,...,x<sub>n</sub>) a degree d > 1 polynomial with coefficients in some field K
(b) S ⊂ K

(c)  $r_1, ..., r_n \in S$  chosen randomly

If f is non-zero, then  $f(r_1, ..., r_n) = 0$  holds with probability  $\leq d/|S|$ 

The point is:

- ▶ Repeat k times, get  $r_1^k, ..., r_n^k$
- The probability that  $f(r_1^k, ..., r_n^k) = 0$  always holds is  $\leq (d/|S|)^k$
- For big S the value  $(d/|S|)^k$  goes to zero
- ▶ If  $f(r_1^k, ..., r_n^k) = 0$  all the time, then it almost certainly is constant zero

## **Count matchings**



Fact. det(Tutte matrix) is zero if and only if there are no perfect matchings

We can check heuristically that the graph below has no perfect matching!



Thank you for your attention!

I hope that was of some help.