What are...random numbers?

Or: Compressible?

Algorithms generate randomness

rule 30:

random number generated:
$1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4}+1 \times 2^{-5}+0 \times 2^{-6}+0 \times 2^{-7}+1 \times 2^{-8}+1 \times 2^{-9}+\ldots=$ 0.724777221679688

Mathematica generated once random numbers using rule 30 But no computer can generated "true randomness"

```
\pi\approx11.0010010000111111011010101000100010000101101000112
```


The digits of π have the behavior of a random walk But no computable real number can generated "true randomness"

The number

is not random because it can be compressed into
for $i=1$ to 10000 do print i
compressible : abababababababababababababababab string length 32
\rightsquigarrow "write ab 16 times" string length 17
not compressible : $4 c 1 j 5 b 2 p 0 c v 4 w 1 \times 8 r \times 2 y 39 u m g w 5 q 85 s 7$ string length 32
$\rightsquigarrow ~ " w r i t e ~ 4 c 1 j 5 b 2 p 0 c v 4 w 1 \times 8 r \times 2 y 39 u m g w 5 q 85 s 7 "$ string length 38

Enter, the theorem/philosophy!

Kolmogorov randomness. A string is random if any computer program that can produce that string is at least as long as the string itself

- This is not the formal definition (see links in the description)
- All reasonable choices of programming language work the same way
- This applies to real numbers $w=a_{1} a_{2} a_{3} \ldots$
- Random real numbers form a measure 1 subset of reals, non-random numbers a measure 0 subset Almost all real numbers are random
- These ideas are used in data compression:

Start: 43'571 bytes
Compressed: 43'794 bytes

Start: 8'853 bytes
Compressed: 7'539 bytes

2.73641

Archimedes' approximation of π is slow. Better: use something like

$$
\frac{1}{\pi}=12 \sum_{k=0}^{\infty} \frac{(-1)^{k}(6 k)!(13591409+545140134 k)}{(3 k)!(k!)^{3} 640320^{3 k+3 / 2}}
$$

to shows that π is not random

Thank you for your attention!

I hope that was of some help.

