What is...a cellular automaton?

Or: From simple rules to life

An easy rule creates a regular pattern

An easy rule creates complex patterns

Conway's game of life

- (a) Any live cell with fewer than two live neighbors dies, as if by underpopulation.
- (b) Any live cell with two or three live neighbors lives on to the next generation.
- (c) Any live cell with more than three live neighbors dies, as if by overpopulation.
- (d) Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

There are 88 non-equivalent elementary cellular automata Rules

	111	110	101	100	011	010	001	000
110	0	1	1	0	1	1	1	0
$black{\leftrightarrow}white$	1	0	0	1	0	0	0	1
left⇔right	0	1	1	1	1	1	0	0

► Mixtures Example 110

► Rule 30 serves/served as a random number generator

▶ Rule 90 is used in number theory (*e.g.* via Sierpiński triangle)

► Rule 110 is Turing complete

▶ Rule 184 is used to model *e.g.* traffic

Thank you for your attention!

I hope that was of some help.