What is...the diamond lemma?

Or: Can you win?

A game on graphs

- Take an \mathbb{R} vertex-weighted graph
- A move is to pick a negative vertex weight -a
- Get a new graph by $-a \mapsto a$ and subtracting a from the neighbors
- You win if all vertex weights are non-negative

Question. If you can win, then will everyone win as well?
Question. Can someone do better than others?

This game is unbiased - it doesn't prefer anyone?

$$
-\left.39\right|^{-1}-222^{\rightarrow}-39 \prod^{1}-322^{\rightarrow}-360^{-2}-12
$$

$$
-2 \quad 2
$$

$$
\begin{array}{lll}
-1 & -3 & 3
\end{array}
$$

$$
-39 \mathfrak{b}-22^{\rightarrow}-37 \text { ㄹ } 02^{\rightarrow}-37 \text {-10 } 0
$$

$$
3
$$

2
2
$34\left[-102^{\rightarrow} 3 \quad 3 \quad 1 \quad-12^{\rightarrow} 3 \quad 3 \quad 0 \quad 1 \quad 1\right.$

We always have local diamonds!

Enter, the theorem!

$$
\rightarrow \text { binary relation on a set }(a \rightarrow b \text { means that } b \text { is below } a)
$$

- Assume that there is no infinite chain $a_{0} \rightarrow a_{1} \rightarrow a_{2} \rightarrow \ldots$
- Assume that every covering is bounded below:

Then every connected component of \rightarrow as a graph contains a unique minimal element Existence and uniqueness

- PBW
- Gröbner bases
- Braid groups
- Lattices

Widely applicable:

- Noncommutative rings
- Low-dimensional topology
- Matroid theory
- More...

Normal forms for symmetric groups?

$$
\langle a, b, c\rangle /(a a=b b=c c=1, a b a=b a b, b c b=c b c, a c=c a)
$$

(a) a is better than b is better than $c: b a b \rightarrow a b a, c b c \rightarrow b c b, a c \rightarrow c a$
(b) Shorter words are better than long words

Diamonds:

We thus always get a normal form

Thank you for your attention!

I hope that was of some help.

