What is...tree counting?

Or: n+1 and n-1

Trees

Tree = a graph with out nontrivial cycles

► One can think of trees as easiest graphs and appear everywhere

• Task Count them!

Counting trees

- ► Turns out that counting trees is difficult
- ► This is meant in the sense that there no known closed formula

Fun side fact #trees ~ $0.5349496... \cdot n^{-5/2} \cdot 2.9557652...^n$

Counting colored trees

► Borchardt-Cayley ~1860 Counting colored trees might be easier!

• The number sequence then is 1, 1, 3, 16, 125, ...

▶ Turns out the answer gets easier when making the question more complicated

The number of colored trees on n+1 vertices is

 $(n+1)^{n-1}$

• Above things are shifted and usually people write n^{n-2}

► Many proofs are known and they are (brilliant but also) quite easy

THEOREM OF THE DA

The Parking Function Formula The number of parking functions of order n is $(n + 1)^{n-1}$.

▶ The number of parking functions on $\{1, ..., n\}$ is $(n+1)^{n-1}$

▶ The number of rooted forests on *n* vertices is $(n+1)^{n-1}$

▶ The number of bases of \mathbb{R}^n that can be made from (0, ..., 0, 1, ..., 1, 0, ..., 0) is $(n+1)^{n-1}$

Thank you for your attention!

I hope that was of some help.