What is...tree counting?

$$
\text { Or: } n+1 \text { and } n-1
$$

- Saturated hydrocarbons

Methane

Ethane

Butane

- A tournament tree

- Tree $=$ a graph with out nontrivial cycles
- One can think of trees as easiest graphs and appear everywhere
- Task Count them!

Counting trees

- Turns out that counting trees is difficult
- This is meant in the sense that there no known closed formula
- Fun side fact \#trees $\sim 0.5349496 \ldots \cdot n^{-5 / 2} \cdot 2.9557652 \ldots{ }^{n}$

Counting colored trees
\rightarrow ค ภ๐ ภ
โร รร รร
โร 5 โร 5
5ร 5 โร
$\therefore 180 \%$

- Borchardt-Cayley ~1860 Counting colored trees might be easier!
- The number sequence then is $1,1,3,16,125, \ldots$
- Turns out the answer gets easier when making the question more complicated

Enter, the theorem

The number of colored trees on $n+1$ vertices is

$$
(n+1)^{n-1}
$$

- Above things are shifted and usually people write n^{n-2}
- Many proofs are known and they are (brilliant but also) quite easy

More on $n+1$ and $n-1$

THEOREM OF THE D

The Parking Function Formula The number of parking functions of order n is $(n+1)^{n-1}$.

Parking functions were introduced by Ronald Pyke in 1959 and independently by Alan Konheim and Benjamin Weiss in the context of data storage. They have come to be studied intensively as mathematical objects in their Weiss in the
own right.

Web link: www.maths.qmul.ac.uk/~pjc/preprints/art.pdf is a nice glimpse of how professional mathematicians respond to stimulating ideas such as the above. And here is the result: www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r92.
\rightleftarrows \# \quad \# Further reading: Enumerative Combinatorics, Vol. 2, by R.P. Stanley, CUP, 2001, Chapter 5 (exercises).

Created by Robin Whity for www.thonemnofthicday or

- The number of parking functions on $\{1, \ldots, n\}$ is $(n+1)^{n-1}$
- The number of rooted forests on n vertices is $(n+1)^{n-1}$
- The number of bases of \mathbb{R}^{n} that can be made from $(0, \ldots, 0,1, \ldots, 1,0, \ldots, 0)$ is $(n+1)^{n-1}$

Thank you for your attention!

I hope that was of some help.

