What is...the Cayley-Bacharach theorem?

Or: Nine and nine!

Two and one

- 2 points determine a line
- Two unequal lines intersect in 1 point
- Let us do everything in projective geometry to avoid special cases

Five and four

- 5 points determine a conic (e.g. circle, ellipse, parabola, hyperbola)
- Two unequal conics intersect in 4 point
- Conic $=$ two variables $X, Y+$ order 2 equation e.g. $X^{2}+Y^{2}=1, X=Y^{2}$

Nine and nine

- 9 points determine a cubic (e.g. an elliptic curve)
- Two unequal cubics intersect in 9 point
- Cubic $=$ two variables $X, Y+$ order 3 equation e.g. $X^{3}+Y^{3}=1, X^{3}-X=Y^{2}$

Enter, the theorem

The intersection of two cubics determines another cubic

To be formally correct add "generic", "projective" and "algebraically closed"

- Above two of the cubics are unions of lines e.g. $(x-y-1)(x-y-2)(x+y-3)$
- Special cases are Pappus' theorem and Pascal's theorem (above right)

On growth rates

$$
-d^{2} \cdots \cdots \cdots \frac{1}{2}\left(d^{2}+3 d\right)
$$

- For degree d curves, the number of intersection points is d^{2}
- For degree d curves, the number of points determining it is $1 / 2\left(d^{2}+3 d\right)$
- So the theorem is essentially saying $d^{2}=1 / 2\left(d^{2}+3 d\right) \Leftrightarrow d=0,3$

Thank you for your attention!

I hope that was of some help.

