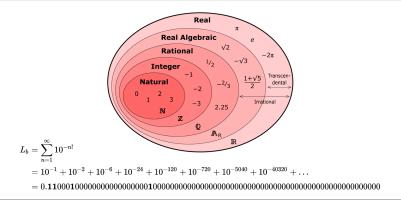
What are...Mahler functions?

Or: Self-similarity and transcendence

Transcendental numbers = beyond polynomial

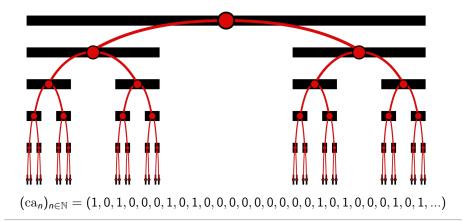


• Roots of polynomials in $\mathbb{Q}[x]$ are called algebraic

Transcendental number = not algebraic (e.g. L_b above is transcendental)

- Proving that a number is transcendental is a classical and difficult problem
- Almost all numbers are transcendental, but proving that a specific one is transcendental is the real meat

Cantor sequence

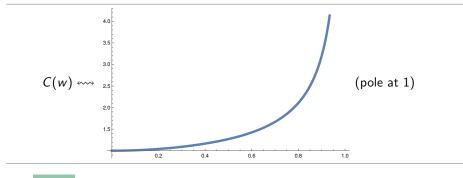


Idea The scaled self-similarity of fractals should produce transcendental numbers

► Should (it does!) give transcendental numbers: the Cantor sequence

$$(\operatorname{ca}_n)_{n\in\mathbb{N}}$$
 with $\operatorname{ca}_n = \begin{cases} 1 & \text{if the ternary expansion of } n \text{ contains no } 1 \\ 0 & \text{otherwise} \end{cases}$

A Mahler function



Idea 2 Put fractals in generating functions

► The Cantor generating function is

$$C(w) = \sum_{n \in \mathbb{N}} \operatorname{ca}_n w^n$$

• C(w) satisfies the functional equation

 $C(w) = (1+w^2) \cdot C(w^3)$

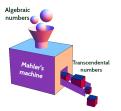
A function F: unit disc $\rightarrow \mathbb{C}$ is called *s*-Mahler functions of degree *p* whenever

$$r_0(w) \cdot F(w) = r_1(w) + r_2(w) \cdot F(w^p) + r_3(w) \cdot F(w^{p^2}) + \dots + r_s(w) \cdot F(w^{p^{s-1}})$$

Here $r_i(w)$ denote rational functions, and radius of convergence is 1 Then, upon one condition (*) which is almost always true, we have:

F(algebraic) = transcendental

► Mahler functions are thus transcendental number generators



(*) is essentially the condition that $p(x) = r_0(1)x^s + r_2(1)x^{s-1} + ... + r_{s-1}(1)x + r_s(1)$ has no repeated roots

Generalizing Liouville's number L_b

► Liouville ~1844 Number of the form

$$\sum_{k=0}^{\infty} \alpha^{k!}, \quad \alpha \text{ algebraic, } 0 < |\alpha| < 1$$

are transcendental

Mahler ~1929 Number of the form

$$\sum_{k=0}^{\infty} lpha^{p^k}, \quad lpha$$
 algebraic, $0 < |lpha| < 1$

are transcendental (the functional equation is $F(w) = w + F(w^p)$)

Thank you for your attention!

I hope that was of some help.