Or: Killing hydras



The Goodstein sequence

» Gi(m) = m Initiation
» Write G,(m) hereditary base n and replace all n by n+ 1 Growth
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Question. Does this ever become zero?



Kirby—Paris hydra game — can you kill it?

Rules
» A hydra is a rooted tree, and you can chop of one of its heads in any step

» If a non-rooted head is cut off in step n, the hydra grows n copies of the part
above the branch node from which the head was removed
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Let us kill the hydra
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Enter, the theorem!

You will ‘always kill the hydra, but you can not prove it:
» Every strategy is a winning strategy

» The statement “Every recursive strategy is a winning strategy” is
not provable in classical arithmetic

You can prove it using stronger number system axioms!
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When does Goodstein’s sequence hits zero?
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| hope that was of some help.



