What are...octonions?

> Or: Division = good, associativity = bad

Double once \Rightarrow all good

- Doubling $=$ Take an algebra A with (anti)involution * and create a new algebra with involution $B=A \oplus A$ via

$$
(p, q)(r, s)=\left(p r-s^{*} q, s p+q r^{*}\right), \quad(p, q)^{*}=\left(p^{*},-q\right)
$$

- Example For $A=\mathbb{R}$ with * $=i d$ doubling gives $B=\mathbb{C}$
- Complex numbers $\mathbb{C} \leadsto 2 d$ number system

Double twice \Rightarrow not commutative

Quaternion
multiplication
table

	$\mathbf{1}$	\mathbf{i}	\mathbf{j}	\mathbf{k}
$\mathbf{1}$	1	\mathbf{i}	\mathbf{j}	\mathbf{k}
\mathbf{i}	\mathbf{i}	-1	\mathbf{k}	$-\mathbf{- j}$
\mathbf{j}	\mathbf{j}	$-\mathbf{k}$	-1	\mathbf{i}
\mathbf{k}	\mathbf{k}	\mathbf{j}	$-\mathbf{i}$	-1

- Doubling $=$ Take an algebra A with (anti)involution * and create a new algebra with involution $B=A \oplus A$ via

$$
(p, q)(r, s)=\left(p r-s^{*} q, s p+q r^{*}\right), \quad(p, q)^{*}=\left(p^{*},-q\right)
$$

- Example For $A=\mathbb{C}$ with *=complex conjugation doubling gives $B=\mathbb{H}$
- Quaternions $\mathbb{H} \xrightarrow{4} \leadsto$ noncommutative 4d number system

Triple once \Rightarrow not commutative + not associative

Standard Model of Elementary Particles

- Doubling $=$ Take an algebra A with (anti)involution * and create a new algebra with involution $B=A \oplus A$ via

$$
(p, q)(r, s)=\left(p r-s^{*} q, s p+q r^{*}\right), \quad(p, q)^{*}=\left(p^{*},-q\right)
$$

- Example For $A=\mathbb{H}$ with *=quaternion conjugation doubling gives $B=\mathbb{O}$
- Octonions $\mathbb{O} \xrightarrow{*} \rightarrow$ noncommutative + nonassociative 8 d number system

Enter, the theorem

We have the following:
(i) $\mathbb{R}, \mathbb{C}, \mathbb{H}$, and \mathbb{O} are normed division algebras over \mathbb{R} Invertibility
(ii) Their dimensions are $1,2,4,8$ This sequence appears somehow everywhere
(iii) There are no other normed division algebras over $\mathbb{R} \mathbb{O}$ is maximal

Any further doubling process looses the invertibility

- Normed division algebra = every nonzero element is invertible, there is a norm
- Only a few properties survive doubling in general, e.g. power associativity does
- Here is the 4th doubling \mathbb{S} :

Octonions everywhere...!?

- © magically appears in the classification and construction of many exceptional mathematical objects
- Example The Lie group G_{2} is obtained from automorphisms of $(\mathbb{O}$
- Example \mathbb{O} provides an elementary derivation of the Leech lattice

Thank you for your attention!

I hope that was of some help.

