What are...octonions?

Or: Division = good, associativity = bad

Double once \Rightarrow all good

• Doubling = Take an algebra A with (anti)involution * and create a new algebra with involution $B = A \oplus A$ via

$$(p,q)(r,s) = (pr - s^*q, sp + qr^*), \quad (p,q)^* = (p^*, -q)$$

• Example For $A = \mathbb{R}$ with * = id doubling gives $B = \mathbb{C}$

► Complex numbers C ↔ 2d number system

Double twice \Rightarrow not commutative

▶ Doubling = Take an algebra A with (anti)involution * and create a new algebra with involution $B = A \oplus A$ via

$$(p,q)(r,s) = (pr - s^*q, sp + qr^*), \quad (p,q)^* = (p^*, -q)$$

- Example For $A = \mathbb{C}$ with *=complex conjugation doubling gives $B = \mathbb{H}$
- Quaternions $\mathbb{H} \iff$ noncommutative 4d number system

Triple once \Rightarrow not commutative + not associative

• Doubling = Take an algebra A with (anti)involution * and create a new algebra with involution $B = A \oplus A$ via

$$(p,q)(r,s) = (pr - s^*q, sp + qr^*), \quad (p,q)^* = (p^*, -q)$$

• Example For $A = \mathbb{H}$ with *=quaternion conjugation doubling gives $B = \mathbb{O}$

Octonions \mathbb{O} \iff noncommutative + nonassociative 8d number system

We have the following:

(i) $\mathbb{R},\,\mathbb{C},\,\mathbb{H},$ and \mathbb{O} are normed division algebras over \mathbb{R} . Invertibility

(ii) Their dimensions are 1, 2, 4, 8 This sequence appears somehow everywhere

(iii) There are no other normed division algebras over $\mathbb R$ $\mathbb O$ is maximal

Any further doubling process looses the invertibility

- \blacktriangleright Normed division algebra = every nonzero element is invertible, there is a norm
- ► Only a few properties survive doubling in general, e.g. power associativity does
- ► Here is the 4th doubling S:

Octonions everywhere...!?

- O magically appears in the classification and construction of many
 exceptional mathematical objects
- ▶ Example The Lie group G_2 is obtained from automorphisms of \mathbb{O}
 - **Example** O provides an elementary derivation of the Leech lattice

Thank you for your attention!

I hope that was of some help.