What is...recurrent versus transient?

Or: Leaving or staying

Coin flip walks

- Coin flip random walk = flip a coin and walk left for tails and right for heads; think of walking on the graph \mathbb{Z}
- Question How often do we visit the a vertex?
- Recurrent We will hit every point infinitely often with $P($ robability $)=1$

Random walks on general graphs

- We randomly walk on some (connected) graph = at each step choose the next step/edge randomly
- We only consider the case where every edge is equally likely to be chosen, and ask the same question as on the previous slide
- Example Every (random walk on a) finite graph is recurrent

Transient

3-dimensional lattice

2-dimensional lattice

- Polya's theorem \mathbb{Z}^{d} is recurrent/transient $\Leftrightarrow d \leq 2 / d>2$
- A drunkard will find their way home, but a drunken bird may get lost forever
- Transient We will hit every point finitely often with $P($ robability $)=1$

Enter, the theorem

Every graph is either recurrent or transient

- The are not a priori opposites: a priori there could be graphs with $\mathrm{P}=0.5$
- This is an instance of a 0-1-theorem : a lot of properties hold with $\mathrm{P}=0$ or $\mathrm{P}=1$ but $0<\mathrm{P}<1$ rarely appears

Recurrent/transient groups

- Call a group recurrent/transient if its Cayley graph is recurrent/transient
- Theorem A group is either recurrent or transient, and recurrent \Leftrightarrow
(i) Its finite
(ii) It virtually \mathbb{Z} or \mathbb{Z}^{2} ($=$ it contains \mathbb{Z} or \mathbb{Z}^{2} with finite index)

Thank you for your attention!

I hope that was of some help.

