What are...tree rotations?

Or: A surprisingly small bound

Binary trees

- Informally Binary tree $=$ a form of a Ahnentafel (ancestor table)
- Binary tree = root/colored vertex joined to either zero or two subtrees, each of which is again a binary tree
- Often but not always these are drawn with the root vertex at the top

Tree rotation

- Suppose a vertex Q has left and right subtrees, with P being the root of the left subtree
- Right tree rotation $=$ A rotation at P moves P into Q 's place and Q to the place of its right child
- Left tree rotation is defined similarly

- Catalan numbers $=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ Asymptotically $C_{n} \sim 4^{n} /\left(n^{3 / 2} \sqrt{\pi}\right)$
- Catalan numbers count the number of binary trees with n vertices
- Question How difficult is it to relate the $\approx 4^{n}$ binary trees via rotation?

Enter, the theorem

All binary trees are rotation distance at most $2 n-6$ from one another

- Note how small $2 n-6$ is compared to $C_{n} \sim 4^{n} /\left(n^{3 / 2} \sqrt{\pi}\right)$

- The bound is in fact achieved for all $n \geq 11$

The associahedron

- The underlying graph is the associahedron
- This shows up everywhere - and the previous theorem tells us something about its size

Thank you for your attention!

I hope that was of some help.

