Or: A surprisingly small bound



Binary trees

» |Informally Binary tree = a form of a Ahnentafel (ancestor table)

» Binary tree = root/colored vertex joined to either zero or two subtrees, each
of which is again a binary tree

» Often _ these are drawn with the root vertex at the top



Tree rotation

Rotate Right
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» Suppose a vertex @ has left and right subtrees, with P being the root of the
left subtree

» Right tree rotation = A rotation at P moves P into Q's place and Q to the
place of its right child

» Left tree rotation is defined similarly



The Catalan numbers

> [Catalan numbers| = C, = ;1; (%) |Asymptotically C, ~ 47/(n*/2\/7)

» Catalan numbers - the number of binary trees with n vertices

> - How difficult is it to relate the ~ 4" binary trees via rotation?



Enter, the theorem

» Note how small 2n — 6 is compared to C, ~ 4"/(n%/?\/7)
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» The bound is in fact - for all n > 11



The associahedron
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» The underlying graph is the 'associahedron

» This shows up everywhere — and the previous theorem tells us something
about its size



| hope that was of some help.



