## What are...Artin braid groups?

Or: Topology via algebra

Braids in mathematics?

Braids are around for millennia, but how to study them mathematically ?


Versmichongad borrining

$$
\begin{array}{l|l|l|l|l|l|l}
a & 1 & 1 & 2+i & 3+i & 2+2 i & 2+2 i \\
i & 2 & 2 & 1 & 1 & 1 & 1 \\
c & 3 & 4 & 4 & 4 & 4 & 3 \\
i & 4 & 3 & 3 & 3+i & 2+2 i & 3+2 i \\
4+3 i
\end{array}
$$


 man sent suture toile einnols designs. ins.




1. ${ }^{2}{ }^{2}$ anis coral,


Gauss' handwritten notes $\sim 1820$ : first appearance of braids in mathematics?

## Braids in 2d



Question. Can one describe the information loss from 3d to 2d?

## Enter, the theorem!

(a) Braids (topology) on $n$ strands form a group $\mathrm{Br}_{n}$ (algebra)
(b) The group $\mathrm{Br}_{n}$ is generated by

(c) Two elements in $\mathrm{Br}_{n}$ represent the same braid if and only if they are related by height moves or
SO

Consequences.

- One gets a purely algebraic way to study braids
- The symmetric group is a quotient, so one also gets a presentation for it

A purely algebraic way to study knots/links


- Alexander theorem. Every knot/link arises in this way
- Markov theorem. Two closures represent the same knot/link if and only if they are related by braid operations or



## Thank you for your attention!

I hope that was of some help.

