What are...the groups of Galois theory?

Or: An ocean of symmetric groups

Symmetries of roots

$\sqrt[3]{2}$ $\begin{gathered} \text { No Change } \\ \sqrt[3]{2} j \\ \sqrt[3]{2} j^{2} \end{gathered}$		
$\begin{aligned} & \sqrt[3]{2} \\ & S_{3} \text { acts on } \quad j \rightarrow j \\ & \quad \sqrt[3]{2} \\ & \end{aligned}$	$\begin{aligned} \sqrt[3]{2} & \rightarrow \sqrt[3]{2} j \\ j & \rightarrow j \end{aligned}$	$\begin{aligned} \sqrt[3]{2} & \rightarrow \sqrt[3]{2} j^{2} \\ j & \rightarrow j \end{aligned}$
$\operatorname{roots}\left(x^{3}-2\right)$: $\sqrt[3]{2}$		$\begin{gathered} \sqrt[3]{2} \sqrt[3]{2} j \\ \sqrt[3]{2} j^{2} \end{gathered}$
$\begin{aligned} \sqrt[3]{2} & \rightarrow \sqrt[3]{2} \\ j & \rightarrow j^{2} \end{aligned}$	$\begin{aligned} \sqrt[3]{2} & \rightarrow \sqrt[3]{2} j \\ j & \rightarrow j^{2} \end{aligned}$	$\begin{aligned} \sqrt[3]{2} & \rightarrow \sqrt[3]{2} j^{2} \\ j & \rightarrow j^{2} \end{aligned}$

- Galois group $G(f)=$ symmetry group of roots of a polynomial $f \in \mathbb{Q}[x]$
- Example $G\left(x^{3}-2\right)$ is S_{3}
- Open question Do all finite groups appear as $G(f)$ for some f ?

Small $=$ easy

$$
G\left(x^{5}-x-1\right)=S_{5}:
$$

```
In[2]:= Roots[x^5-x-1 == 0,x]
Out[[2]= x = ^1.17\ldots | | x == -0.765\ldots-0.352\ldotsi|}|
    x== (๑.0.765\ldots+0.352\ldots i |।
    x== 0.181\ldots-1.08\ldots i || x== 0.181\ldots+1.08\ldots i
```

$$
\begin{aligned}
\operatorname{In}[3]= & \operatorname{Roots}\left[x^{\wedge} 5+x-1=0, x\right] \\
\text { Ou[3] }=x= & \frac{1}{3} \cdot\left(-1+\left(\frac{25}{2}-\frac{3 \sqrt{69}}{2}\right)^{1 / 3}+\left(\frac{1}{2} \cdot(25+3 \sqrt{69})\right)^{1 / 3}\right) \| x= \\
& -\frac{1}{3}-\frac{1}{6} \cdot(1+i \operatorname{l} \sqrt{3})\left(\frac{25}{2}-\frac{3 \sqrt{69}}{2}\right)^{1 / 3}-\frac{1}{6} \cdot(1-i \sqrt{3})\left(\frac{1}{2} \cdot(25+3 \sqrt{69})\right)^{1 / 3}| | \\
x= & -\frac{1}{3}-\frac{1}{6} \cdot(1-i \sqrt{3})\left(\frac{25}{2}-\frac{3 \sqrt{69}}{2}\right)^{1 / 3}- \\
& \frac{1}{6} \cdot(1+i \sqrt{3})\left(\frac{1}{2} \cdot(25+3 \sqrt{69})\right)^{1 / 3}| | x=(-1)^{1 / 3}| | x=-(-1)^{2 / 3}
\end{aligned}
$$

$G\left(x^{5}+x-1\right)=D_{6}:$

- $G(f)$ measures how difficult it is to express the roots of f (solvability)
- Example $G(f)=S_{5}$ and roots are "random" \longleftrightarrow no easy formula; $G(f)=D_{6}$ and roots are iterated radicals
- Question How difficult is it to express roots?

An ocean of symmetric groups

- Worst case for f of degree five is S_{5}
- Plots above Left: $G\left(x^{5}+a x+b\right)$; right $G\left(x^{5}+a x^{2}+b\right)$; for $a, b \in\{-15, \ldots, 15\}$
- Color code for $\# G(f) 1 \rightarrow$ White, $2 \rightarrow$ Red, $4 \rightarrow$ Orange, $6 \rightarrow$ Yellow, $8 \rightarrow$ Green, $12 \rightarrow$ Blue, $20 \rightarrow$ Cyan, $24 \rightarrow$ Magenta, $120 \rightarrow$ Purple

Enter, the theorem

$$
\begin{gathered}
\text { Let } A l /(N)=\left\{f \in \mathbb{Z}[x]\left|\operatorname{deg} f=n, \sum\right| \operatorname{coeffs}(f) \mid<N\right\} \text { and } \\
S_{n}(N)=\left\{f \in \mathbb{Z}[x]\left|\operatorname{deg} f=n, \sum\right| \operatorname{coeffs}(f) \mid<N, G(f)=S_{n}\right\} \\
\\
\lim _{N \rightarrow \infty} \# S_{n}(N) / \# \operatorname{All}(N) \rightarrow 1
\end{gathered}
$$

Essentially all Galois groups are symmetric groups

- Essentially all polynomials have "random" roots
- Here are $G\left(x^{5}+a x^{3}+b\right)$ and $G\left(x^{5}+a x^{4}+b\right)$ for completeness:

Radicals of radicals of...

$$
G\left(x^{5}-15 x-14\right)=S_{4}:
$$

$$
\begin{aligned}
& \ln [1]:=\mathbf{a}:=-15 \text {; } \\
& \text { b: = - 14; } \\
& \operatorname{Roots}\left[x^{\wedge} 5+a * x+b=0, x\right] \\
& \text { Out }[3]=X=\frac{1}{4}-\frac{1}{4 \sqrt{\frac{3}{-5-\frac{136 \cdot 5^{2 / 3}}{(65+3 \sqrt{22305})^{1 / 3}+4}(5 \cdot(65+3 \sqrt{22305}))^{1 / 3}}}}- \\
& \frac{1}{2} \cdot \sqrt{\left(-\frac{5}{6}+\frac{34 \cdot 5^{2 / 3}}{3(65+3 \sqrt{22305})^{1 / 3}}-\frac{1}{3}(5 \cdot(65+3 \sqrt{22305}))^{1 / 3}-\right.} \\
& \frac{5}{2} \sqrt{\left.\frac{3}{-5-\frac{136 \cdot 5^{2 / 3}}{(65+3 \sqrt{22305})^{1 / 3}}+4(5 \cdot(65+3 \sqrt{22305}))^{1 / 3}}\right)}|\mid
\end{aligned}
$$

- The first not solvable group is A_{5}
- For all smaller groups one gets radical expressions
- However, these radical expressions are slightly obscure

Thank you for your attention!

I hope that was of some help.

