What are...computer proofs?

Or: Who needs mathematicians?

A proof

► The above is a proof

► What is a proof?

▶ I will not really answer that ;-) so: "proof = whatever is accepted as a proof"

Stage 1: computer assisted proofs

► Computers are very often used to verify "ugly" parts of proofs

Example A difficult integral solved by a computer algebra system

• Example A large case-by-case check that is too large to do by hand

Stage 2: computer verified proofs

- ► Computers are sometimes used to verify proofs
- **Example** Quadratic reciprocity has a computer verified proof
 - Example The Jordan curve theorem has a computer verified proof

The following (and more) proofs have been computer verified :

Year	Theorem	Proof System	Formalizer	Traditional Proof
1986	First Incompleteness	Boyer-Moore	Shankar	Gödel
1990	Quadratic Reciprocity	Boyer-Moore	Russinoff	Eisenstein
2000	Fundamental - of Calculus	HOL Light	Harrison	Henstock
2000	Fundamental - of Algebra	Mizar	Milewski	Brynski
2004	Fundamental - of Algebra	Coq	Geuvers et al.	Kneser
2004	Four-Color	Coq	Gonthier	Robertson et al.
2004	Prime Number	Isabelle	Avigad et al.	Selberg-Erdös
2005	Jordan Curve	HOL Light	Hales	Thomassen
2005	Brouwer Fixed Point	HOL Light	Harrison	Kuhn
200	Flyspeck I	Isabelle	Bauer-Nipkow	Hales
2007	Cauchy Residue	HOL Light	Harrison	classical
	Prime Number	HOL Light	Harrison	analytic proof
The Formal Jordan Curve Theorem $\forall C. simple_closed_curve top 2 C \rightarrow$ $(\exists AB. top 2 A \land top 2 B \land$ $connected top 2 A \land connected top 2 B \land$ $A \neq \emptyset \land B \neq \emptyset \land$ $A \cap B = \emptyset \land A \cap C = \emptyset \land B \cap C = \emptyset \land$ $A \cup B \cup C = uclid 2$)				

▶ I am slow... This list is from 2008 – much more has been done!

► A key step is to put statements into computer readable form

Full Automation of the Robbins Conjecture

Let *S* be a nonempty set with an associative commutative binary operation $(x, y) \mapsto xy$ and a unary operation $x \mapsto [x]$ (which, for convenience, we write synonymously as $x \mapsto \bar{x}$). The Robbins conjecture (in Winker form) asserts that the general Robbins identity

 $[[ab][a\bar{b}]] = a$

implies the existence of $c, d \in S$ such that $[cd] = \bar{c}$. Here is the original proof that EQN discovered, as reconstructed in [10].

Proof. A solution is $c = x^3 u$, d = xu, where $u = [x\bar{x}]$ and x is arbitrary. Abbreviate j = [cd], $e = u[x^2]\bar{c}$. Over the equality sign, a prime indicates a direct application of the Robbins identity; a superscript indicates a substitution of the numbered line; no superscript indicates a rewriting of abbreviations c, d, e, j, u.

$0:[u[x^2]]$	$= [[x\bar{x}][xx]] = x.$
$1 : [xu[xu[x^2]\bar{c}]]$	$= \left[\left[\left[xux^2 \right] \left[xu[x^2] \right] \right] \left[xu[x^2] \bar{c} \right] \right] = \left[\left[\bar{c} \left[xu[x^2] \right] \right] \left[\bar{c}xu[x^2] \right] \right] = \left[\bar{c}.$
2 : [<i>uc</i> ̄]	$= [u[x^{2}ux]] = 0 [u[x^{2}u[u[x^{2}]]]] = 0 [[[ux^{2}][u[x^{2}]]] [x^{2}u[u[x^{2}]]]]$
	$=' [u[x^2]] = 0 x.$
3 : [<i>ju</i>]	= [[xcu]u] = ' [[xcu][[uc][uc]]] = 2 [[xcu][x[cu]]] = 'x
$4:[x[x[x^2]u\bar{c}]]$	$=' [[[x[u\bar{c}]][xu\bar{c}]][x[x^2]u\bar{c}]] =^2 [[[x^2][xu\bar{c}]][[x^2]xu\bar{c}]] =' [x^2]$
$5 : [x\bar{c}]$	$=^{1} [x[xu[xu[x^{2}]\bar{c}]]] =^{0} [[u[x^{2}]][xu[xu[x^{2}]\bar{c}]]]$
	$= [[u[x^{2}]][ux[xe]]] = 4 [[u[x[xe]]][ux[xe]]] = 'u$
6 : [<i>jx</i>]	$=' [j[[xc][x\bar{c}]]] = [j[[xc]u]] = [[uxc][u[xc]]] = ' u$
7:[cd]	$= j = [[j[x\bar{c}]][jx\bar{c}]] = [[ju][jx\bar{c}]] = [[zu][\bar{c}u][\bar{c}jx]]$
	$=^{6} \left[\left[\bar{c} \left[jx \right] \right] \left[\bar{c} jx \right] \right] =' \bar{c}.$

► Computers should be used more often to proof new theorems

Example Robbins conjecture (a certain conjecture in universal algebra) – many people tried to prove it but only a computer managed to do it! Thank you for your attention!

I hope that was of some help.