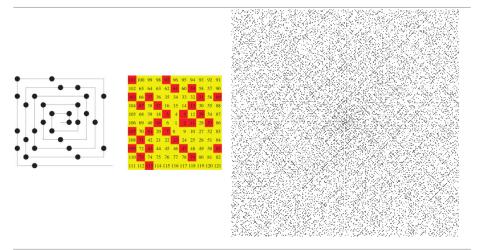
What is...the prime number theorem?

Or: Let us not count!

Primes are rather random



- Prime numbers appear essentially randomly
- ► Zooming out, they mostly look like noise

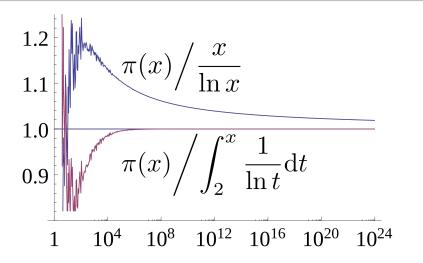
• Question Can we say anything about when they pop-up?

Counting primes

Limite x	Nombre γ			Nombre y	
	par la formule.	par les Tables.	Limite x	par la formule.	par les Tables.
10000 20000 30000 40000 50000 60000	1 230 2268 3 252 4 205 5 1 36 6 049	1 230 2263 3246 4204 51 34 6058	100000 150000 200000 250000 300000 550000	9588 13844 17982 22035 26023 29961	9592 13849 17984 22045 25998
70000 80000 90000	6949 7838 8717	6936 7837 8713	400000	ally, #prin =1229.	

- ► Counting primes is difficult
- ▶ Legendre and others (~1793) counted primes up to 400000 and more

Not counting primes



► Counting primes is difficult but...

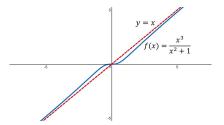
... an asymptotic formula is not so difficult to guess

Enter, the theorem

For
$$\pi(n) =$$
 number of primes $\leq n$ we have

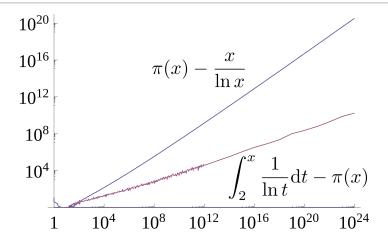
 $\pi(n) \sim n/\log(n)$

- Upshot $n/\log(n)$ is super easy to compute
- ▶ \sim = asymptotically, *i.e.* for *n* large we have $\pi(n)$ "=" $n/\log(n)$



- ► This theorem has many proofs (some collect such proofs)
- There is also a version using the logarithmic integral Li(n)

Careful with absolute errors



▶ $\pi(n) \sim n/\log(n)$ does not imply that $|\pi(n) - n/\log(n)|$ is small for large n

- ▶ In fact, $|\pi(n) n/\log(n)|$ gets arbitrary large
- $\pi(n) Li(n)$ switches signs infinitely often

Thank you for your attention!

I hope that was of some help.