What is...Frobenius' density theorem?

Or: Does it factor?

The prime number theorem $\pi(n) \sim n / \log (n)$

The probability of n being prime is (roughly) $1 / \log (n)$

Any hope to compute factors modulo p ?

$f(X)=X^{4}+X^{3}+1$		
2	$X^{4}+X^{3}+1$	(4)
3	$\left(X^{3}+2 X^{2}+2 X+2\right)(X+2)$	$(3,1)$
5	$\left(X^{3}+3 X^{2}+X+2\right)(X+3)$	$(3,1)$
7	$X^{4}+X^{3}+1$	(4)
11	$\left(X^{3}+9 X^{2}+6 X+4\right)(X+3)$	$(3,1)$
13	$X^{4}+X^{3}+1$	(4)
17	$\left(X^{3}+7 X^{2}+8 X+14\right)(X+11)$	$(3,1)$
19	$\left(X^{3}+11 X^{2}+15 X+17\right)(X+9)$	$(3,1)$
23	$\left(X^{2}+4 X+20\right)(X+6)(X+14)$	$(2,1,1)$
29	$\left(X^{2}+12 X+26\right)(X+7)(X+11)$	$(2,1,1)$

For example $(-3)^{4}+(-3)^{3}+1=55=0 \bmod 5$ or 11

The prime number theorem for factorizations

\# of appearances of types for the first 10000 primes for $f(X)=X^{4}+X^{3}+1$:

(4)	$(3,1)$	$(2,2)$	$(2,1,1)$	$(1,1,1,1)$
2479	3367	1250	2489	414
$\approx 1 / 4$	$\approx 1 / 3$	$\approx 1 / 8$	$\approx 1 / 4$	$\approx 1 / 24$

\# of appearances of types for the first 10000 primes for $g(X)=X^{4}-12 X^{3}+1$

(4)	$(3,1)$	$(2,2)$	$(2,1,1)$	$(1,1,1,1)$
2500	3319	1233	2516	430
$\approx 1 / 4$	$\approx 1 / 3$	$\approx 1 / 8$	$\approx 1 / 4$	$\approx 1 / 24$

Side node. Finitely many exceptional cases of higher multiplicities, e.g. $g(X)=X^{4}-12 X^{3}+1 \equiv(X+1)^{4} \bmod 2$, are not counted!

Enter, the theorem!

For each $f \in \mathbb{Z}[X]$ of degree n there exists a group $G \subset S_{n}$ such that the density of primes p for which f has decomposition type c is

$$
d(c)=\frac{\#\{g \in G \mid \text { cycle type is } c\}}{\# G}
$$

G is the Galois group associated to f
Consequences.
(a) $d(c)$ is the probability of a random prime having factorization type c
(b) Average number of zeros modulo p is the number of factors of f over \mathbb{Z}
(c) For a given n there exist only finitely many classes of irreducible polynomials with the same probability type
(d) For $G=S_{n}$ we have $d(c)^{-1} \in \mathbb{N}$

Only five patterns for degree 4

f	G	(4)	$(3,1)$	$(2,2)$	$(2,1,1)$	$(1,1,1,1)$
$X^{4}+X^{3}+1$	S_{4}	$1 / 4$	$1 / 3$	$1 / 8$	$1 / 4$	$1 / 24$
$X^{4}+3 X^{2}+7 X+4$	A_{4}	0	$2 / 3$	$1 / 4$	0	$1 / 12$
$X^{4}-X^{2}-1$	D_{4}	$1 / 4$	0	$3 / 8$	$1 / 4$	$1 / 8$
$X^{4}-X^{2}+1$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	0	0	$3 / 4$	0	$1 / 4$
$X^{4}+X^{3}+X^{2}+X+1$	$\mathbb{Z} / 4 \mathbb{Z}$	$1 / 2$	0	$1 / 4$	0	$1 / 4$

Thank you for your attention!

I hope that was of some help.

