What is...Frobenius' density theorem?

Or: Does it factor?



The probability of *n* being prime is (roughly)  $1/\log(n)$ 

## Any hope to compute factors modulo *p*?

|    | $f(X) = X^4 + X^3 + 1$            |         |
|----|-----------------------------------|---------|
| 2  | $X^4 + X^3 + 1$                   | (4)     |
| 3  | $(X^3 + 2X^2 + 2X + 2)(X + 2)$    | (3,1)   |
| 5  | $(X^3 + 3X^2 + X + 2)(X + 3)$     | (3,1)   |
| 7  | $X^4 + X^3 + 1$                   | (4)     |
| 11 | $(X^3 + 9X^2 + 6X + 4)(X + 3)$    | (3,1)   |
| 13 | $X^4 + X^3 + 1$                   | (4)     |
| 17 | $(X^3 + 7X^2 + 8X + 14)(X + 11)$  | (3,1)   |
| 19 | $(X^3 + 11X^2 + 15X + 17)(X + 9)$ | (3,1)   |
| 23 | $(X^2 + 4X + 20)(X + 6)(X + 14)$  | (2,1,1) |
| 29 | $(X^2 + 12X + 26)(X + 7)(X + 11)$ | (2,1,1) |

For example  $(-3)^4 + (-3)^3 + 1 = 55 = 0 \mod 5$  or 11

# of appearances of types for the first 10000 primes for  $f(X) = X^4 + X^3 + 1$ :

| (4)       | (3,1)     | (2, 2)    | (2,1,1)   | (1, 1, 1, 1) |
|-----------|-----------|-----------|-----------|--------------|
| 2479      | 3367      | 1250      | 2489      | 414          |
| pprox 1/4 | pprox 1/3 | pprox 1/8 | pprox 1/4 | pprox 1/24   |

# of appearances of types for the first 10000 primes for  $g(X) = X^4 - 12X^3 + 1$ :

| (4)       | (3,1)     | (2,2)     | (2, 1, 1) | (1, 1, 1, 1) |
|-----------|-----------|-----------|-----------|--------------|
| 2500      | 3319      | 1233      | 2516      | 430          |
| pprox 1/4 | pprox 1/3 | pprox 1/8 | pprox 1/4 | pprox 1/24   |

Side node. Finitely many exceptional cases of higher multiplicities, e.g.  $g(X) = X^4 - 12X^3 + 1 \equiv (X + 1)^4 \mod 2$ , are not counted!

For each  $f \in \mathbb{Z}[X]$  of degree *n* there exists a group  $G \subset S_n$  such that the density of primes *p* for which *f* has decomposition type *c* is

$$d(c) = rac{\#\{g \in G \mid ext{cycle type is } c\}}{\#G}$$

 ${\it G}$  is the Galois group associated to  ${\it f}$ 

Consequences.

- (a) d(c) is the probability of a random prime having factorization type c
- (b) Average number of zeros modulo p is the number of factors of f over  $\mathbb Z$
- (c) For a given n there exist only finitely many classes of irreducible polynomials with the same probability type
- (d) For  $G = S_n$  we have  $d(c)^{-1} \in \mathbb{N}$

## Only five patterns for degree 4

| f                                                   | G                            | (4) | (3,1) | (2,2) | (2, 1, 1) | (1, 1, 1, 1) |
|-----------------------------------------------------|------------------------------|-----|-------|-------|-----------|--------------|
| $X^4 + X^3 + 1$                                     | <i>S</i> <sub>4</sub>        | 1/4 | 1/3   | 1/8   | 1/4       | 1/24         |
| X <sup>4</sup> +3X <sup>2</sup> +7X+4               | A <sub>4</sub>               | 0   | 2/3   | 1/4   | 0         | 1/12         |
| $X^4 - X^2 - 1$                                     | <i>D</i> <sub>4</sub>        | 1/4 | 0     | 3/8   | 1/4       | 1/8          |
| $X^4 - X^2 + 1$                                     | $(\mathbb{Z}/2\mathbb{Z})^2$ | 0   | 0     | 3/4   | 0         | 1/4          |
| X <sup>4</sup> +X <sup>3</sup> +X <sup>2</sup> +X+1 | $\mathbb{Z}/4\mathbb{Z}$     | 1/2 | 0     | 1/4   | 0         | 1/4          |

Thank you for your attention!

I hope that was of some help.