Or: Matrices, of course



Substructure in vector spaces

» The “correct” notion of substructure in vector spaces is a

» The only vector space without nontrivial substructures is _
> - What is the analog for rings/algebras?




Substructure in rings

» The “correct” notion of substructure in rings/algebras is a [ (2-sided) ideal

» The only rings/algebras without nontrivial substructures are called simple

» Question Can we classify them?



Searching for noncommutative fields

Closure under addition
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Commutativity of multiplication

Multiplicative identity:

No zero divisors:

Multiplicative inverse:

» Fields are the |easiest algebraic structures
» A commutative simple ring is a field

» We are thus looking for a | “noncommutative analog” of a field



Enter, the theorem

The only simple rings/algebras are ' matrix rings/algebras (-+some finite

dimensionality assumption)
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» This is surprisingly easy compared to the classification of other “simple things”

» For example, the classification of finite simple groups is |very difficult

CLASSIFICATION OF FINITE SIMPLE GROUPS
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The more general theorem

Character Table of Sz

IDENTITY REFLECTION | ROTATION
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» There is '@ more general version which is very useful in representation theory

» Theorem Semisimple rings/algebras are direct sums of matrix rings/algebras



| hope that was of some help.



