What is...Artin–Wedderburn's theorem?

Or: Matrices, of course

Substructure in vector spaces

- ▶ The "correct" notion of substructure in vector spaces is a linear subspace
- ► The only vector space without nontrivial substructures is 1d=ground field
 - Question What is the analog for rings/algebras?

Substructure in rings

- ► The "correct" notion of substructure in rings/algebras is a (2-sided) ideal
- ► The only rings/algebras without nontrivial substructures are called simple
 - Question Can we classify them?

Searching for noncommutative fields

- Fields are the easiest algebraic structures
- A commutative simple ring is a field
- ► We are thus looking for a "noncommutative analog"

of a field

► This is surprisingly easy compared to the classification of other "simple things"

► For example, the classification of finite simple groups is very difficult

The more general theorem

Character Table of S3

	identity 1	REFLECTION S 1	ROTATION S 1 S 2
Trivial representation	1	1	1
Reflection representation	2	0	-1
Sign representation	1	-1	1

There is a more general version which is very useful in representation theory
Theorem Semisimple rings/algebras are direct sums of matrix rings/algebras

Thank you for your attention!

I hope that was of some help.