What are...expander graphs?

Or: Sparse and connected

Cutting cakes, ah sorry, graphs

- Problem We want graphs that are hard to cut yet have few edges
- ► Such graphs are called expanders
- ▶ It is not clear why such graphs exist

Measuring "Hard to cut"

- Given a subset S of the vertices of G, let ∂S be the boundary of S
- ▶ Let $h(G) = \min_{S,0 < |S| \le n/2} |\partial S| / |S|$ Edge expansion or Cheeger's constant

Slogan Large h(G) means it is hard to cut G, small h(G) means bottleneck

• Goal Find G with few edges and large h(G)

Bottlenecks and friends

▶ Take two complete graphs K_n ; above k = 3

▶ Connected *i* vertices one-by-one and get graphs G_0 , G_1 , G_2 , ..., G_n

▶ Then $h(G_0) = 0$, $h(G_1) = 1/n$, $h(G_2) = 2/n$, ..., $h(G_n) = n/n = 1$

Families of expanders exist

► Here is a definition:

Example Vertices $\{0, ..., p(prime) - 1\}$, connect $a \neq 0$ to $a \pm 1 \mod p$ and $a^{-1} \mod p$, and 0 to 0, 1, p - 1, gives a family of expanders

Computer networks, brains, tramways, more...

- The above should have high h(G) to avoid bottlenecks
- ► The above should have few connections increase efficiency

▶ There you go: expanders show up to save the day

Thank you for your attention!

I hope that was of some help.