What is...Kasteleyn's theorem?

Or: Difficult, yet easy

Perfect matchings

- Matching = pairing of all vertices
- Perfect matching $=$ matching + edges are not adjacent
- Question Count perfect matchings!

A difficult problem

- Counting perfect matchings is \#P complete
- For this video \#P complete $=$ very difficult

Or maybe not?

- Counting perfect matchings is \#P complete in general
- That does not mean it is difficult for all graphs, e.g. for the ∞ subclass of edgeless graphs the count is easy (silly example)
- Task Find good subclasses for which this is easy

Enter, the theorem

For planar graphs counting perfect matching is computable in polynomial time

This remarkably fast

- There are not many other classes of graphs where the counting can be done in polynomial time
- For example, for bipartite graphs one is already in \#P

Use the adjacency matrix

$$
A(G)=\left(\begin{array}{cccccc}
0 & -1 & -1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 0 & 1 \\
1 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
-1 & 0 & 0 & -1 & 0 & 1 \\
0 & -1 & 0 & -1 & -1 & 0
\end{array}\right), \quad \text { det }=16
$$

- Fact We can orient the edges so that every face has an odd number of clockwise edges (can be done fast and algorithmically)
- Take the weighted adjacency matrix $A(G)$
- \#perfect matchings $=\sqrt{\operatorname{det} A(G)}$

Thank you for your attention!

I hope that was of some help.

