Or: Difficult, yet easy



Perfect matchings
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» Matching = pairing of all vertices
» Perfect matching = matching + edges are not adjacent

» | Question| Count perfect matchings!



A difficult problem
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» Counting perfect matchings is _

» For this video #P complete = very difficult



Or maybe not?
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» Counting perfect matchings is #P complete |in general

» That does not mean it is difficult for all graphs, e.g. for the co subclass of
edgeless graphs the count is easy (silly example)

» | Task Find good subclasses for which this is easy



Enter, the theorem

For planar graphs counting perfect matching is |computable in polynomial time
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This remarkably fast

» There are not many other classes of graphs where the counting can be done in
polynomial time

» For example, for bipartite graphs one is already in #P



Use the adjacency matrix
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» Fact We can orient the edges so that every face has an odd number of
clockwise edges

» Take the weighted adjacency matrix A(G)

» F#perfect matchings = \/det A(G)



| hope that was of some help.



