What is...a Hadamard matrix?

Or: Orthogonality exists! Or not?

- Hadamard matrix = only entries +1 and -1 , rows are mutually orthogonal
- Illustration +1 and -1 get two different colors
- Question Do these matrices exist?

First constructions

$$
n=64:
$$

- Easy fact Hadamard matrices can only exist for $n=1,2$ or multiples of 4
- For $n=2^{k}$ Use the construction

$$
H_{2^{k+1}}=\left(\begin{array}{cc}
H_{2^{k}} & H_{2^{k}} \\
H_{2^{k}} & -H_{2^{k}}
\end{array}\right)
$$

$n \neq 2^{k}$ gets rather random

- For $n=12,20$ there are Hadamard matrices that look kind of random
- It gets even worse for bigger n

Nontrivial problem Do Hadamard matrices of order $4 k$ always exist?

Enter, the theorem

Hadamard matrices exist for:
$\triangleright n=2^{k}$ Easy
$\triangleright q+1$ for q a prime power $\equiv 3 \bmod 4$ or $2(q+1)$ for q a prime power $\equiv 1$ $\bmod 4$ Not too bad
\triangleright Some sporadic values such as 92 Quite hard

$$
n=92:
$$

- The Hadamard conjecture

$$
\text { Do Hadamard matrices of order } 4 k \text { always exist? }
$$

is a major unsolved problem in mathematics

- The smallest open value is $n=668$ (in early 2023)

Very overdetermined

- The entries of an Hadamard matrix are tightly coupled; there is a lot of redundant information
- If an Hadamard matrix of order n has $O\left(n^{2} / \log n\right)$ entries randomly deleted, then with overwhelming likelihood, one can recover the original matrix

Thank you for your attention!

I hope that was of some help.

