What are...independence results?

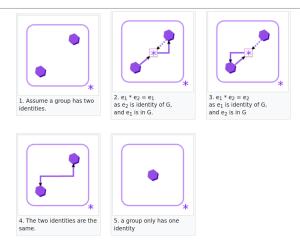
Or: Its true and its not true

Axioms and models

	Axioms	Model
Numbers	Peano axioms	N or or
Groups	Group axioms	$S_4 = \langle s, t, u \text{ some relations} \rangle$ Or
Sets	ZFC axioms	or
More		

- ► A model is a realization of some axiom system
- **Example** Any group is a model of the group axioms

"Truth"

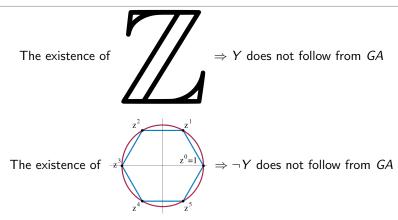


▶ There are statements that follow from the axioms

Example "Uniqueness of the unit" ' follows from the group axioms

► Such statements are true in all models

Independence



► A statement X is independent of an axiom system A if

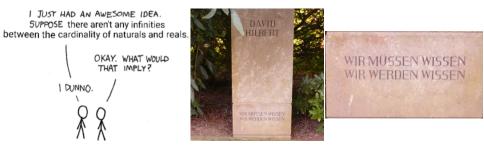
neither
$$X$$
 nor $\neg X$

can be proven in A

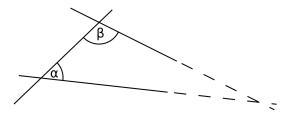
• Example $Y = \exists$ an element $\neq 1$ of finite order" is independent of the group axioms GA

Enter, the theorem

The CH is independent of ZFC



- \blacktriangleright This is maybe the most important independence result and #1 of Hilbert's problems
- \blacktriangleright CH = continuum hypothesis = there is no set whose cardinality is strictly between that of $\mathbb N$ and $\mathbb R$
- ► ZFC = Zermelo–Fraenkel plus choice = standard axioms of set theory
 - ▶ Proof Gödel ~1940: CH holds in some model; Cohen ~1963: ¬CH holds in some model



► There are many more independence results

Example The parallel postulate PP is independent of the other axioms of Euclid

► Proof Folklore ~xxBC: PP holds in some model; Gauss+friends ~1800: ¬PP holds in some model

Thank you for your attention!

I hope that was of some help.