What are...Riemann surfaces?

Or: Avoid choices!

Multi-valued functions

- The square root on $\mathbb{R}_{\geq 0}$ is a multi-valued function: there is some ambiguity defining it
- Most often, and a bit naively, the ambiguity is resolved by making choices
- Question

How to avoid choices?

Complex square roots

- A choice for $\sqrt{-}: \mathbb{C} \backslash \mathbb{R}_{<0} \rightarrow \mathbb{C}$ is to take the square root with positive real part
- Problem There is no continuous extension of $\sqrt{-}$ over the missing half-line: when one approaches a point on the half-line from opposite sides, the limits of the chosen values differ by a sign

Avoid choices!

Riemann surface for the function $f(z)=\sqrt{z} . \quad$ ■ The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real part of \sqrt{z}. The imaginary part of \sqrt{z} is represented by the coloration of the points. For this function, it is also the height after rotating the plot 180° around the vertical axis.

- $S=\left\{(z, w) \in \mathbb{C}^{2} \mid w^{2}=z\right\}$
- $\sqrt{z}=w$ is single-valued on S
- S is a first example of a Riemann surface (following history)

Enter, the theorem

Riemann surface $=$ surface $(=2 d$ over $\mathbb{R})$ with a notion of complex-analytic functions

- Theorem The theory of compact Riemann surfaces is equivalent to that of projective algebraic curves They are manifolds and algebraic objects
- Theorem Every simply connected Riemann surface is equivalent to the Riemann sphere, \mathbb{C} or upper half-plane (there are many more such results)
- Non-compact (right) Riemann surfaces are "designed" for multi-valued functions
- A compact (left) Riemann surface is "the opposite" of what I showed you so far

Sphere:

, for log:

Objects of complex analysis and topology

- Riemann surfaces can be divided into: hyperbolic, parabolic and elliptic
- Closed Riemann surfaces are classified by their genus = handles
- In contrast to plain surfaces, Riemann surfaces are always orientable

Thank you for your attention!

I hope that was of some help.

