What is...the LKB representation?

Or: Braids are linear

- Braids $=$ strings in 3 -space without turnbacks and with fixed bottom/top
- Two braids are the same if they are related by 3d isotopy
- Main question Can we determine whether braids are the same?

- The three braids above are all different but that is not obvious
- Braids can get arbitrary complicated
- Thus, it is hopeless to distinguish braids, right?

Alexander's theorem

- Every braid gives a knot/link
- Distinguishing knots/links is very hard
- Thus, it is really hopeless to distinguish braids, right?

Enter, the theorem

- I.e. there is a way to associate matrices $M(\beta)$ to braids β such that

$$
\beta=\gamma \Leftrightarrow M(\beta)=M(\gamma)
$$

```
sage: B = BraidGroup(3)
sage: b = B([1, 2, 1])
sage: b.LKB_matrix()
[ [rrex^4*y+x^3*y m
sage: c = B([2, 1, 2])
sage: c.LKB_matrix()
[\mp@code{larer}
```

- This solves the braid recognition problem!
- Formally, the braid group has a faithful representation on a finite dimensional vector space

Knots are still hard

- There are two extra relations when going from braids to knots/links
- These extra relations ruin the recognition property

Thank you for your attention!

I hope that was of some help.

