What is...Dirac's belt trick?

Or: 720° is it!

- Rotate the belt by twice 360° around a vertical axis
- The belt tangles up and looks like it is in a nontrivial state
- The belt can be untangled without any further rotation

- Top The belt is twisted by 180° about the axis parallel to the length of the belt
- Bottom The belt is rotated by 180° about an axis in the plane of the table perpendicular to the length of the belt

- Top The belt is twisted by 360° about the axis parallel to the length of the belt
- Bottom The belt is rotated by 360° about an axis in the plane of the table perpendicular to the length of the belt

Enter, the theorem

$\mathrm{SO}_{3}(\mathbb{R})$ is not simply connected and its π_{1} is $\mathbb{Z} / 2 \mathbb{Z}$

- $\mathrm{SO}_{3}(\mathbb{R})=$ rotation group on \mathbb{R}^{3}
- Topologically $\mathrm{SO}_{3}(\mathbb{R})=S^{3}$ /antipodal points

- Belt trick $=$ a loop by 360° is nontrivial, doing it twice is trivial

First, give the belt two full twists.
End of belt has been rotated by 159 deg

- We draw $\mathrm{SO}_{3}(\mathbb{R})$ as a sphere
- Recall that antipodal points are identified
- Then the rotation by 360° loops around once and 720° loops around twice

Thank you for your attention!

I hope that was of some help.

