What is...the infinitude of prime knots?

Or: Euclid's theorem for knots

$$
(p=a b) \Rightarrow(a=1 \text { or } b=1)
$$ $\#$ primes $=\infty$

- Multiplication is a basic operation of arithmetic
- Primes are the elements of multiplication
- Euclid's theorem $\sim 300 B C$ There are infinitely many primes

Knot theory

- A knot is a closed string (a circle S^{1}) in three space
- Knots are often studied by projections to the plane Shadows
- Question Is there a basic operation of knot theory?

Connected sum \#

- The connected sum is an operation much like multiplication
- Prime knots : $(K=L \# M) \Rightarrow L$ is trivial or M is trivial
- How many prime knots are there?

Enter, the theorem

Euclid's theorem for knots ~ 19 ?? There are infinitely many prime knots

- Actually, there are quite a few prime knots:

Proof The torus knot $T_{2, q}$ for $q>1$ odd is prime and has genus $(q-1) / 2$

Pretzel primes

- Euclid's theorem has many proofs - and so does its knotty version
- Proof 2 The pretzel knot $P(p, 2 p-1,2 p+1)$ for $p>1$ odd is prime and has a Jones polynomial of min power $A^{-16 p}$

Thank you for your attention!

I hope that was of some help.

