What is...the infinitude of prime knots?

Or: Euclid's theorem for knots

Euclid's theorem

$$(p = ab) \Rightarrow (a = 1 \text{ or } b = 1)$$

#primes = ∞

- Multiplication is a basic operation of arithmetic
- Primes are the elements of multiplication
- ► Euclid's theorem ~300BC There are infinitely many primes

Knot theory

- ▶ A knot is a closed string (a circle S^1) in three space
- ► Knots are often studied by projections to the plane Shadows
 - Question Is there a basic operation of knot theory?

Connected sum #

- ▶ The connected sum is an operation much like multiplication
- Prime knots : $(K = L \# M) \Rightarrow L$ is trivial or M is trivial
- How many prime knots are there?

Euclid's theorem for knots \sim 19?? There are infinitely many prime knots

► Actually, there are quite a few prime knots:

A chart of all prime knots with seven or fewer crossings, not including mirror-images, plus the unknot (which is not considered prime).

Proof The torus knot $T_{2,q}$ for q > 1 odd is prime and has genus (q-1)/2

Pretzel primes

▶ Euclid's theorem has many proofs – and so does its knotty version

▶ **Proof 2** The pretzel knot P(p, 2p - 1, 2p + 1) for p > 1 odd is prime and has a Jones polynomial of min power A^{-16p}

Thank you for your attention!

I hope that was of some help.