## What is...the smooth periodic table?

Or: Simple Lie groups

## The best of both worlds



► A circle is an object of (differential) geometry Smooth manifold

► A circle is an object of algebra Group



A Lie group - fundamental for both worlds

A Lie group = smooth manifold + smooth group structure

Name Diagram Lie algebra Lie group  $\mathfrak{sl}_n(\mathbb{C})$  $\mathrm{SL}_n(\mathbb{C})$  $A_n$ Bn  $\mathfrak{so}_{2n+1}(\mathbb{C})$  $SO_{2n+1}(\mathbb{C})$  $\rightarrow$  $C_n$  $\mathfrak{sp}_{2n}(\mathbb{C})$  $SP_{2n}(\mathbb{C})$  $SO_{2n}(\mathbb{C})$  $D_n$  $\mathfrak{so}_{2n}(\mathbb{C})$  $E_6$ Exceptional Exceptional  $E_7$ Exceptional Exceptional  $E_8$ Exceptional Exceptional F4 Exceptional Exceptional  $\rightarrow$  $G_2$ Exceptional Exceptional  $\rightarrow \bullet$ 

The periodic table – the simplest Lie groups

A centerless connected complex Lie group is called simple if its Lie algebra is simple. (No universally accepted definition and I take one of them.) They are classified as:

(a) Classical types *ABCD* The matrix groups

(b) Exceptional types *EFG* A handful of exceptions

▶ This is not quite what I showed you because of the centerless condition

- ▶ Via coloring of the diagrams one can include the real versions as well
- ► All connected Lie groups arise from R, U(1) and the ABCDEFG types via group extensions Elementary smooth symmetries

## Galois vs. Lie - discrete vs. smooth symmetries





Galois  $\sim$ 1830:

Lie  ${\sim}1870$ :

Finite groups are symmetries of

polynomial equations

Lie groups are symmetries of

differential equations



Thank you for your attention!

I hope that was of some help.