What is...exotic four space?

Or: Dimension four is weird!?

Calculus

► Calculus is one of the main discovery of history

Question How many generalizations of calculus exist?

Calculus on manifolds

- ▶ Smooth *n*-manifold "=" something that locally looks like standard \mathbb{R}^n
- ► Being a smooth manifold involves a choice of a structure
- Examples \mathbb{R}^n , spheres S^n , more crazy stuff...

Smooth manifolds allow calculus , e.g. Stokes theorem

Smooth structure

- ▶ $f: M \to N$ continuous is called smooth if $\phi \circ f \circ \psi^{-1}$ is smooth
- ▶ *M* and *N* have the same smooth structure if $\exists f : M \to N$ smooth + bijective + smooth inverse The correct notion of equivalence
 - Question Are smooth structures unique, at least for "easy" manifolds?

► These can be constructed by surgery around knots

▶ \exists exotic \mathbb{R}^4 that cannot be smoothly embedded into \mathbb{R}^4 "Very strange calculus"

And the sphere?

Dimension	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Smooth types	1	1	1	≥1	1	1	28	2	8	6	992	1	3	2	16256	2	16	16	523264	24

- ► Above: the number of different smooth structures on Sⁿ; dim 4 ↔ 4d Poincaré conjecture
- ▶ Dim 4 is still weird We know "nothing" about smooth structures on S^4

Thank you for your attention!

I hope that was of some help.