What is...homotopy of spheres?

Or: Surprisingly hard!?

The fundamental group π_{1}

$-\pi_{1}$ measures how loops arrange in spaces

- π_{1} is a great low dim invariant and fairly computable

The higher ones π_{n}

- π_{n} measures how n spheres arrange in spaces
- π_{n} is a great n dim invariant: a bunch of numbers associated to a space
- What about computability?

What about the sphere?

- $\pi_{1}\left(S^{2}\right)$ is easy to compute
- $\pi_{n}\left(S^{2}\right)=$ of the form $\mathbb{Z}^{\oplus n_{0}} \oplus \mathbb{Z} / n_{1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / n_{\mathbb{Z}} \mathbb{Z}=$ a bunch of numbers n_{0}, \ldots, n_{l}
- Can we say anything about $\pi_{n}\left(S^{2}\right)$?

Enter, the theorems

We know infinitely many entries of the homology table $\pi_{n}\left(S^{k}\right)$:

	π_{1}	π_{2}	π_{3}	π_{4}	π_{5}	π_{6}	π_{7}	π_{8}	π_{9}	π_{10}	π_{11}	π_{12}	π_{13}	π_{14}		
S^{0}	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
S^{1}	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0	0	0		
S^{2}	0	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 3$	$\mathbb{Z} / 15$	$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 2 \times \mathbb{Z} / 12$	$(\mathbb{Z} / 2)^{2} \times \mathbb{Z} / 84$		
S^{3}	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 3$	$\mathbb{Z} / 15$	$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 2 \times \mathbb{Z} / 12$	$(\mathbb{Z} / 2)^{2} \times \mathbb{Z} / 84$		
S^{4}	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} \times \mathbb{Z} / 12$	$(\mathbb{Z} / 2)^{2}$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 3 \times \mathbb{Z} / 24$	$\mathbb{Z} / 15$	$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{3}$	$\mathbb{Z} / 2 \times \mathbb{Z} / 12 \times \mathbb{Z} / 120$		
S^{5}	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 30$	$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{3}$		
S^{6}	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 60$	$\mathbb{Z} / 2 \times \mathbb{Z} / 24$		
S^{7}	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 120$		
S^{8}	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0	0	$\mathbb{Z} / 2$		
S^{9}	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0	0		
S^{10}	0	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0		
S^{11}	0	0	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$		
S^{12}	0	0	0	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	\mathbb{Z}		
S^{13}	0	0	0	0	0	0	0	0	0	0	0	0	\mathbb{Z}	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$
S^{14}	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

- But honestly, we know essentially nothing (only the "easy" bits are known)
- the $S^{0}+S^{1}$ rows are completely known, but already the S^{2} row is widely open
- The colored bits are known for all n, k A slightly fattened diagonal
- The white bits are widely open in general

The north east is difficult to compute!

	π_{1}	π_{2}	π_{3}	π_{4}	π_{5}	π_{6}	π_{7}	π_{8}	$\pi 9$	π_{10}	π_{11}	π_{12}	π_{13}	π_{14}
S^{0}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S^{1}	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0	0	0
S^{2}	0	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 3$	$\mathbb{Z} / 15$	$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 2 \times \mathbb{Z} / 12$	$(\mathbb{Z} / 2)^{2} \times \mathbb{Z} / 84$
S^{3}	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 12$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 3$	$\mathbb{Z} / 15$	$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 2 \times \mathbb{Z} / 12$	$(\mathbb{Z} / 2)^{2} \times \mathbb{Z} / 84$
S^{4}	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} \times \mathbb{Z} / 12$	$(\mathbb{Z} / 2)^{2}$	$(\mathbb{Z} / 2)^{2}$	$\mathbb{Z} / 3 \times \mathbb{Z} / 24$	$\mathbb{Z} / 15$	$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{3}$	$\mathbb{Z} / 2 \times \mathbb{Z} / 12 \times \mathbb{Z} / 120$
S^{5}	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 30$	$\mathbb{Z} / 2$	$(\mathbb{Z} / 2)^{3}$
S^{6}	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 60$	$\mathbb{Z} / 2 \times \mathbb{Z} / 24$
S^{7}	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 120$
S^{8}	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0	0	$\mathbb{Z} / 2$
S^{9}	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0	0
S^{10}	0	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$	0
S^{11}	0	0	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 24$
S^{12}	0	0	0	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$
S^{13}	0	0	0	0	0	0	0	0	0	0	0	0	\mathbb{Z}	$\mathbb{Z} / 2$
S^{14}	0	0	0	0	0	0	0	0	0	0	0	0	0	\mathbb{Z}

- $\pi_{3}\left(S^{2}\right) \cong \mathbb{Z}$ is very hard to imagine Hopf fibration

- This kind of indicates that this is supposed to be hard
- Higher homotopy groups are algorithmically computable but the problem is still very hard ($W[1]$-hard with respect to n)

Thank you for your attention!

I hope that was of some help.

