What is...coloring of numbers?

Or: From colors to set theory

Schur's masterpiece

- For any n there $\exists S(n) \leq n!e$ such that any n-coloring of $[S(n)]=\{1, \ldots, S(n)\}$ contains a monochromatic solution to $a+b=c$
- Schur's theorem was a starting point of many coloring problems à la Ramsey theory

Proving Schur's masterpiece

- Color the edge $i \leftrightarrow j$ of K_{m} for $m \approx n!e$ by the color of $i-j$
- Easy We find a triangle whose edges are colored in the same color
- The triangle is our solution

Going to bigger sets

- Question What about colorings of \mathbb{N} instead of finite sets?
- Question What about colorings of \mathbb{R} instead of \mathbb{N} ?
- We will use the variant of Schur's masterpiece searching for a monochromatic solution $a+b=c+d$

Enter, the theorems

We have:

- Schur's masterpiece works for any finite coloring of \mathbb{N}
- Schur's masterpiece works for any countable coloring of \mathbb{R} if CH is false
- Schur's masterpiece fails for some countable coloring of \mathbb{R} if CH is true
- $\mathrm{CH}=$ continuum hypothesis $=$ there is no set whose cardinality is strictly between that of \mathbb{N} and that of \mathbb{R}; this is independent of usual set theory

- The above is thus a combinatorial statement independent of usual set theory

An interesting boundary case

- Schur's masterpiece works for any finite coloring of \mathbb{R}
- Schur's masterpiece works for any countable coloring of V for V a \mathbb{Q}-vector space with $\operatorname{dim}_{\mathbb{Q}} V>\operatorname{dim}_{\mathbb{Q}} \mathbb{R}$

Thank you for your attention!

I hope that was of some help.

