## What is...the dimension of a graph?

Or: 1d objects can be high dimensional?

Graphs are abstract objects, but...


- Graph $=$ abstract collection of vertices and edges Doesn't live anywhere
- But we can ask for nice realizations
- For example, the right realization is better than the left as edges have the same distance


## Low dimensional graphs



- A graph fits nicely into $\mathbb{R}^{n}$ if we can draw it in $\mathbb{R}^{n}$ with all edges of equal length
- $\operatorname{dim}(G)$ is the minimum $n$ such that $G$ fits nicely into $\mathbb{R}^{n}$ Dimension
- Problem Can we say anything about $\operatorname{dim}(G)$ ?

Higher dimensional graphs


- The tetrahedron graph is nicely realized by the tetrahedron and we cannot do better
- Problem Is there any maximal possible value for $\operatorname{dim}(G)$ ?
- Problem Can we bound $\operatorname{dim}(G)$ using intrinsic properties of $G$ ?


## Enter, the theorems

There are graphs of arbitrary dimension as $\operatorname{dim}\left(K_{n}\right)=n-1$ but we always have

$$
\operatorname{dim}(G) \leq 2 \cdot \operatorname{maxdeg}(G)
$$

- We have seen $\operatorname{dim}\left(K_{4}\right)=4-1=3$ :

- The bound $2 \operatorname{maxdeg}(G)$ is often not optimal:


The dimension problem is hard


- Finding $\operatorname{dim}(G)$ is known to be NP hard
- In everyday language, finding $\operatorname{dim}(G)$ can get arbitrary hard

Thank you for your attention!

I hope that was of some help.

