What is...the dimension of a graph?

Or: 1d objects can be high dimensional?

Graphs are abstract objects, but...

- ▶ Graph = abstract collection of vertices and edges Doesn't live anywhere
- ► But we can ask for nice realizations
- ▶ For example, the right realization is better than the left as edges have the same distance

Low dimensional graphs

- \blacktriangleright A graph fits nicely into \mathbb{R}^n if we can draw it in \mathbb{R}^n with all edges of equal length
- ▶ dim(G) is the minimum *n* such that *G* fits nicely into \mathbb{R}^n Dimension
- Problem Can we say anything about dim(G)?

Higher dimensional graphs

- ▶ The tetrahedron graph is nicely realized by the tetrahedron and we cannot do better
- ▶ Problem Is there any maximal possible value for dim(G)?
- Problem Can we bound dim(G) using intrinsic properties of G?

There are graphs of arbitrary dimension as $dim(K_n) = n - 1$ but we always have $dim(G) \le 2 \cdot \max\deg(G)$

• We have seen $dim(K_4) = 4 - 1 = 3$:

• The bound 2maxdeg(G) is often not optimal:

The dimension problem is hard

- ▶ Finding *dim*(*G*) is known to be NP hard
- ▶ In everyday language, finding dim(G) can get arbitrary hard

Thank you for your attention!

I hope that was of some help.