## What is...crossing number additivity?

Or: Adding crossings adds crossings?

Crossings in projections


- Knots live in three-space and do not cross
- But their 2d projections=shadows cross
- The number of crossings depends on the projection





73

$7_{6}$


- The crossing number $\operatorname{cr}(K)$ of a knot $K$ is the minimum number of crossings running over all projections
- Most knot tables are ordered by crossing number
- Problem Computing the crossing number is essentially impossible


## Crossing number under addition=connected sum \#



- Question Is $\operatorname{cr}(K)+\operatorname{cr}(L)=\operatorname{cr}(K \# L)$ ?
- "Adding crossings adds crossings?" is one of the biggest open problems in knot theory


## Enter, the theorem

We have

$$
\frac{1}{152}(\operatorname{cr}(K)+\operatorname{cr}(L)) \leq \operatorname{cr}(K \# L) \leq \operatorname{cr}(K)+\operatorname{cr}(L)
$$

- $\operatorname{cr}(K \# L) \leq \operatorname{cr}(K)+\operatorname{cr}(L)$ as $K \# L$ is a projection with $\operatorname{cr}(K)+\operatorname{cr}(L)$ crossings
- The main statement is the lower bound
- For some knot classes we know equality, e.g. for alternating knots



## Nature knows this is hard...?

Circular DNA Molecule


Circle with no intersections in 3-dimensions $=$ KNOT


DNA knot


Mathematical knot

- $\operatorname{cr}\left({ }_{-}\right)$and the physical behavior of DNA knots are related
- For prime DNA knots $\operatorname{cr}\left({ }_{-}\right)$is a good predictor of certain behavior
- For composite knots this seems to be wrong

Thank you for your attention!

I hope that was of some help.

