What is...the strong law of small numbers?

Or: There are not enough small numbers

A trap and my pattern fails for $n=6$ a.k.a. Moser's circle problem

What is the maximal number of faces one can get by dividing a circle by chords with no >2 internally concurrent?

Facts only facts!

The numbers $31,331,3331,33331,333331,3333331,33333331, \ldots$ are all (?) prime

$$
\begin{align*}
& (x+y)^{3}=x^{3}+y^{3}+3 x y\left(x^{2}+x y+y^{2}\right)^{0} \\
& (x+y)^{5}=x^{5}+y^{5}+5 x y\left(x^{2}+x y+y^{2}\right)^{1} \\
& (x+y)^{7}=x^{7}+y^{7}+7 x y\left(x^{2}+x y+y^{2}\right)^{2} \tag{?}
\end{align*}
$$

$$
a_{0}=1, a_{n+1}=\left(1+a_{0}^{2}+\ldots+a_{n}^{2}\right) /(n+1) \text { gives only (?) intergers: }
$$

n	0	1	2	3	4	5	6	7	8	9
a_{n}	1	2	3	5	10	28	154	3520	1551880	267593772160

$a_{n}=\left(\partial_{x}^{n} x^{x}\right)(1)$ is always (?) divisible by n :

n	1	2	3	4	5	6	7	8	9	10	11	12
a_{n} / n	1	1	1	2	2	9	-6	118	-568	4716	-38160	358126

Another one: Pascal and constructible polygons

Pascal's triangle mod 2 encodes (?) the number of regular polygons with an odd number of sides constructible with ruler and compass

Enter, the theorem/philosophy!

There aren't enough small numbers to meet the many demands made of them

Richard K. Guy

In other words: You can't tell by looking
This has wide application, outside mathematics as well as within

The Strong Law of Small Numbers

Richard K. Guy

Department of Mathematics and Statistics, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

The 10th Moser circle puzzles me once again

Only 230 faces. Claim. If you resolve >2 intersections, you get $256=2^{9}$ faces!

Thank you for your attention!

I hope that was of some help.

