What is...the strong law of small numbers?

Or: There are not enough small numbers

A trap and my pattern fails for n = 6 a.k.a. Moser's circle problem

What is the maximal number of faces one can get by dividing a circle by chords with no > 2 internally concurrent?

Facts only facts!

The numbers 31, 331, 3331, 33331, 333331, 3333331, 3333331, ... are all (?) prime

$$(x + y)^{3} = x^{3} + y^{3} + 3xy(x^{2} + xy + y^{2})^{0}$$
$$(x + y)^{5} = x^{5} + y^{5} + 5xy(x^{2} + xy + y^{2})^{1}$$
$$(x + y)^{7} = x^{7} + y^{7} + 7xy(x^{2} + xy + y^{2})^{2}$$
...(?)

$$a_{0} = 1, a_{n+1} = (1 + a_{0}^{2} + ... + a_{n}^{2})/(n+1) \text{ gives only (?) intergers:}$$

$$\frac{n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}{a_{n} | 1 | 2 | 3 | 5 | 10 | 28 | 154 | 3520 | 1551880 | 267593772160}$$

Another one: Pascal and constructible polygons

Pascal's triangle mod 2 encodes (?) the number of regular polygons with an odd number of sides constructible with ruler and compass

Enter, the theorem/philosophy!

There aren't enough small numbers to meet the many demands made of them Richard K. Guy

In other words: You can't tell by looking This has wide application, outside mathematics as well as within

The Strong Law of Small Numbers

RICHARD K. GUY

Department of Mathematics and Statistics, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Only 230 faces. Claim. If you resolve > 2 intersections, you get $256 = 2^9$ faces!

Thank you for your attention!

I hope that was of some help.