What is...the Perron–Frobenius theorem?

Or: The leading terms.

A motivating example

What on earth is going on? Strange patterns with the eigenvalues and vectors:

Negative patterns?

Non-negative. The pattern persist:

Negative. The pattern breaks:

Let us talk about graphs

A matrix valued in \mathbb{N}_0 is called irreducible if its graph is strongly connected.

Let M be an irreducible matrix with entries in N₀. Then:
(a) There exists a unique eigenvalue pf ∈ R_{>0} of M whose absolute value is bigger than those of other eigenvalues The leading eigenvalue

- (b) Up to scalars, there is a unique eigenvector PF with entries from $\mathbb{R}_{>0}$, and it has eigenvalue pf The leading eigenvector
- (c) The only eigenvectors with the same absolute value as *pf* are on the same circle as *pf* Symmetry of the eigenvalues

Model. x_i^j is the number of members of the *i*th age group at the *j*th snapshot in time. $M = (m_{ij})$ transition matrix between the snapshots.

(m_{11})	m_{12}	m_{13}	m_{14}		m_{1N}	$\left(x^{j}\right)$	$\left(x_{1}^{j+1}\right)$
<i>m</i> ₂₁	0	0	0	0		$\begin{pmatrix} x_1 \\ x_2^j \end{pmatrix}$	$\begin{pmatrix} x_1 \\ x_2^{j+1} \end{pmatrix}$
0	<i>m</i> ₃₂	0	0	0	·	$\begin{vmatrix} x_3^j \end{vmatrix} =$	x_{3}^{j+1}
0	0	<i>m</i> 43	0	0	·	x_4^J	x_{4}^{j+1}
(:	·	•••	۰.	۰.	·.)	(:)	(:)

First row: Contribution of each age group to the reproduction Lower diagonal: Transition from age group i to i + 1

- (a) If pf(M) > 1, then the population will grow without limit
- (b) If pf(M) < 1, then the population will become extinct
- (c) If pf(M) = 1, then it depends

Thank you for your attention!

I hope that was of some help.