## What is...the permanent?

Or: The trivial representation.

## The determinant without signs

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i, \sigma_{i}} \operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i, \sigma_{i}}
$$

Example. For $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ :

$=a_{11} a_{22} a_{33}+a_{12} a_{21} a_{33}+a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}+a_{13} a_{22} a_{31}$

## Determinant-geometry, permanent-combinatorics

Riddle. How many ways are there to choose a distinct element from each subset of

$$
X=\{\{3,5,6,7\},\{3,7\},\{1,2,4,5,7\},\{3\},\{1,3,6\},\{1,5,7\},\{1,2,3,6\}\} ?
$$

Answer. Calculate the permanent of

$$
\begin{aligned}
M & =\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right) \\
& \text { You get } \operatorname{perm}(M)=2 .
\end{aligned}
$$

The permanent always counts something

$$
\operatorname{perm}(0)=0, \quad \operatorname{perm}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=1, \quad \operatorname{perm}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)=2, \quad \operatorname{perm}\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)=9,
$$

This counts the number of fixpoint-free permutations, e.g.


## For completeness: A formal definition.

The determinant perm is the unique function (non-trivial: it exists!) from $n \times n$ matrices to the ground field such that:

- $\operatorname{perm}(i d)=1$
- perm is multilinear on columns
- perm is symmetric

The second bullet point is e.g.

$$
\operatorname{perm}\left(\begin{array}{ll}
a & b+e \\
c & d+f
\end{array}\right)=\operatorname{perm}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\operatorname{perm}\left(\begin{array}{ll}
a & e \\
c & f
\end{array}\right)
$$

The third bullet point is e.g.

$$
\operatorname{perm}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\operatorname{perm}\left(\begin{array}{ll}
b & a \\
d & c
\end{array}\right)
$$

## More counting



$$
\leftrightarrow \operatorname{perm}\left(\begin{array}{llllllll}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right)=81=9^{2}
$$

The permanent counts matchings:


## Thank you for your attention!

I hope that was of some help.

