What is...the determinant?

Or: Signed permutations.

It is all about area

Wish. The determinant should be the area of matrix times unit square.

It is all about area - well, almost

So we let $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=-\operatorname{det}\left(\begin{array}{cc}a & b \\ -c & -d\end{array}\right)=a d-b c$

What about higher dimensions?

$$
\left(\begin{array}{ccc}
0 & -1 / 3 & -4 / 5 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)
$$

Volume of matrix times unit cube is $\left|\operatorname{det}\left(\begin{array}{ccc}0 & -1 / 3 & -4 / 5 \\ -1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right)\right|=|-4 / 5|$

For completeness: A formal definition.

The determinant det is the unique function (non-trivial: it exists!) from $n \times n$ matrices to the ground field such that:

- $\operatorname{det}(i d)=1$
- det is multilinear on columns
- det is antisymmetric

The second bullet point is e.g.

$$
\operatorname{det}\left(\begin{array}{ll}
a & b+e \\
c & d+f
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
a & e \\
c & f
\end{array}\right)
$$

The third bullet point is e.g.

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=-\operatorname{det}\left(\begin{array}{ll}
b & a \\
d & c
\end{array}\right)
$$

Can you make this explicit?

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i, \sigma_{i}}
$$

Example. For $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$:

$$
=a_{11} a_{22} a_{33}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}+a_{13} a_{21} a_{32}+a_{12} a_{23} a_{31}-a_{13} a_{22} a_{31}
$$

Thank you for your attention!

I hope that was of some help.

