
What are...direct sums ⊕?

Or: How to add vector spaces and matrices.



My wish list for adding vector spaces.

I I want V ⊕W ∼= W ⊕ V .

I I want (V ⊕W )⊕ X ∼= V ⊕ (W ⊕ X ).

I I want dim(V ⊕W ) = dim(V )+dim(W ).

Does this remind you of numbers?



How can we add vectors externally?
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Vector spaces V and W have bases {v1, ..., vn} and {w1, ...,wm}.
The space V ⊕W has bases {(v1, 0), ..., (vn, 0), (0,w1), ..., (0,wm)}.

Two bases give add to a new one:
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Where my wishes granted?

V ⊕W ∼= W ⊕ V ? Yep:
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(V ⊕W )⊕ X ∼= V ⊕ (W ⊕ X )? Yep:
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dim(V ⊕W ) = dim(V ) + dim(W )? Yep:
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For completeness: A formal definition.

If V and W are vector spaces, then V ⊕W is the vector space whose:

elements are pairs (v ,w) with v ∈ V and w ∈W ;

addition is componentwise, i.e. (v ,w) + (v ′,w ′) = (v + v ′,w + w ′);

scalar multiplication is componentwise, i.e. λ(v ,w) = (λv , λw).



And what about matrices?
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0 0 5 6 7



They really do not know each other ;-)



Thank you for your attention!

I hope that was of some help.


