What are...direct sums \oplus ?

Or: How to add vector spaces and matrices.

My wish list for adding vector spaces.

- I want $V \oplus W \cong W \oplus V$.
- I want $(V \oplus W) \oplus X \cong V \oplus(W \oplus X)$.
- I want $\operatorname{dim}(V \oplus W)=\operatorname{dim}(V)+\operatorname{dim}(W)$.

Does this remind you of numbers?

How can we add vectors externally?

$$
\mathbb{R}^{3} \oplus \mathbb{R}^{2} \ni\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \oplus\binom{4}{5}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right) \quad \text { ens }\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right) \in \mathbb{R}^{5}
$$

Vector spaces V and W have bases $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$. The space $V \oplus W$ has bases $\left\{\left(v_{1}, 0\right), \ldots,\left(v_{n}, 0\right),\left(0, w_{1}\right), \ldots,\left(0, w_{m}\right)\right\}$.

Two bases give add to a new one:
$\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\} \quad\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\} \oplus\left\{\binom{1}{0},\binom{0}{1}\right\}$

Where my wishes granted?

$$
\begin{gathered}
V \oplus W \cong W \oplus V ? \text { Yep: } \\
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \oplus\binom{4}{5}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right) "="\left(\begin{array}{l}
4 \\
5 \\
1 \\
2 \\
3
\end{array}\right)=\binom{4}{5} \oplus\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\end{gathered}
$$

$$
(V \oplus W) \oplus X \cong V \oplus(W \oplus X) \text { ? Yep: }
$$

$$
\left.\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \oplus\binom{4}{5}\right) \oplus(6)=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right)\right) "="\left(\begin{array}{c}
1 \\
2 \\
3 \\
6
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
5 \\
5
\end{array}\right) \oplus\left(\binom{4}{5} \oplus(6)\right)
$$

$\operatorname{dim}(V \oplus W)=\operatorname{dim}(V)+\operatorname{dim}(W)$? Yep:

$$
\#\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)\right\}=5=3+2=\#\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}+\#\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

For completeness: A formal definition.

If V and W are vector spaces, then $V \oplus W$ is the vector space whose:
elements are pairs (v, w) with $v \in V$ and $w \in W$;
addition is componentwise, i.e. $(v, w)+\left(v^{\prime}, w^{\prime}\right)=\left(v+v^{\prime}, w+w^{\prime}\right)$;
scalar multiplication is componentwise, i.e. $\lambda(v, w)=(\lambda v, \lambda w)$.

And what about matrices?

$$
\begin{gathered}
\left(\mathbb{R}^{2} \xrightarrow{\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)} \mathbb{R}^{2}\right) \oplus\left(\mathbb{R}^{3} \xrightarrow{\left(\begin{array}{lll}
5 & 6 & 7
\end{array}\right)} \mathbb{R}^{1}\right) \\
\left.=\mathbb{R}^{5} \xrightarrow{1} \begin{array}{ll|lll}
2 & 0 & 0 & 0 \\
3 & 4 & 0 & 0 & 0 \\
\hline 0 & 0 & 5 & 6 & 7
\end{array}\right) \xrightarrow[\mathbb{R}^{3}]{ }
\end{gathered}
$$

They really do not know each other ;-)

Thank you for your attention!

I hope that was of some help.

