What is...a change of basis?

Or: Moving, rotating and scaling axes.

Twice the same beast?

A rotation! $M=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
Another rotation? $N=\left(\begin{array}{ll}1 / 3 & -5 / 6 \\ 4 / 3-1 / 3\end{array}\right)$

The action is similar:

Question. In what sense are they equal?

Maps in coordinates

$$
M=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad P=\left(\begin{array}{cc}
1 / 2 & 1 \\
-1 & 1
\end{array}\right), \quad P^{-1}=\left(\begin{array}{cc}
2 / 3 & -2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right), \quad N=\left(\begin{array}{cc}
1 / 3 & -5 / 6 \\
4 / 3 & -1 / 3
\end{array}\right)
$$

The matrix P is the base-change, a.k.a. change of coordinates.

Lets think about functions

$$
\begin{gathered}
\mathbb{R}\left\{\binom{1}{0},\binom{0}{1}\right\}=\mathbb{R}^{2} \xrightarrow{M} \mathbb{R}^{2}=\mathbb{R}\left\{\binom{1}{0},\binom{0}{1}\right\} \\
\mathbb{R}\left\{\binom{1 / 2}{-1},\binom{1}{1}\right\}=\mathbb{R}^{2} \xrightarrow{N} \mathbb{R}^{2}=\mathbb{R}\left\{\binom{1 / 2}{-1},\binom{1}{1}\right\}
\end{gathered}
$$

These are the same functions:

$$
\begin{gathered}
M\binom{1}{0}=\binom{0}{1}=0 \cdot\binom{1}{0}+1 \cdot\binom{0}{1}, \quad N\binom{1 / 2}{-1}=\binom{1}{1}=0 \cdot\binom{1 / 2}{1}+1 \cdot\binom{1}{1} \\
M\binom{0}{1}=\binom{-1}{0}=-1 \cdot\binom{1}{0}+0 \cdot\binom{0}{1}, \quad N\binom{1}{1}=\binom{-1 / 2}{-1}=-1 \cdot\binom{1 / 2}{1}+0 \cdot\binom{1}{1}
\end{gathered}
$$

Up to change of coordinates, M and N describe the same linear map!

For completeness: A formal definition.

Let $B^{\text {old }}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $B^{\text {new }}=\left\{w_{1}, \ldots, w_{n}\right\}$ be two bases of \mathbb{K}^{n}.

- We can define a vector $a \in \mathbb{K}^{n}$ by its coordinates $\left(a_{1}, \ldots, a_{n}\right)=a_{1} v_{1}+\ldots+a_{n} v_{n}$ in $B^{\text {old }}$
- We can define a vector $b \in \mathbb{K}^{n}$ by its coordinates $\left(b_{1}, \ldots, b_{n}\right)=b_{1} w_{1}+\ldots+b_{n} w_{n}$ in $B^{\text {new }}$
- Even if $a=b$ abstractly, $\left(a_{1}, \ldots, a_{n}\right) \neq\left(b_{1}, \ldots, b_{n}\right)$

A change-of-basis matrix P is a $n \times n$ matrix such that $\left(b_{1}, \ldots, b_{n}\right)=P\left(a_{1}, \ldots, a_{n}\right)$ holds for all coordinate vectors that represent the same vector.

In other words, P changes $B^{\text {old }}$ into $B^{\text {new }}$

If $N=P M P^{-1}$, then M and N are the same linear map up to choice of coordinates.

$$
1 \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+1 \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+1 \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=1 / 2 \cdot\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)+3 / 2 \cdot\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right)+1 / 2 \cdot\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)
$$

The vector is the same, but coordinates are different:

$$
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \text { vs. } \quad\left(\begin{array}{llll}
1 / 2 & 3 / 2 & 1 / 2
\end{array}\right)
$$

Thank you for your attention!

I hope that was of some help.

