What is...a linear map?

Or: Linear algebra done right.

What is the standard coordinate system?

None of these is better than the others!

Abstract vs. real life

| | | |
| :---: | :---: | :---: | :---: | :---: |
| Numbers | Abstract | Incarnation |
| Linear maps | f: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=(y,-x)$ | $\left(\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right)$ or or... |

Linear maps are matrices without choosing coordinates

Let us have a look at an example.

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=(y,-x)
$$

- f preserves addition, i.e.
$f\left((x, y)+\left(x^{\prime}, y^{\prime}\right)\right)=f\left(x+x^{\prime}, y+y^{\prime}\right)=\left(y+y^{\prime},-x-x^{\prime}\right)=f(x, y)+f\left(x^{\prime}, y^{\prime}\right)$
- f preserves scalar multiplication, i.e.

$$
f(a(x, y))=f(a x, a y)=(a y,-a x)=a f(x, y)
$$

First scale and then rotate is the same as first rotate and then scale:

For completeness: A formal definition.

Let V, W be two vector spaces over \mathbb{K}. A map $f: V \rightarrow W$ is linear if:

- It preserves addition, i.e. $f(v+w)=f(v)+f(w)$ for $v, w \in V$
- It preserves scalar multiplication, i.e. $f(a w)=a f(v)$ for $a \in \mathbb{K}, v \in V$

Note that addition of vectors and scalar multiplication are precisely the two operation on vector spaces
In other words, linear maps preserve the vector spaces structures
Choosing bases B_{V} and B_{W} of V and W, a linear map f is a matrix $A(f)$ obtained by writing the images of B_{V} expressed in B_{W} into the columns of $A(f)$

Everything exists basis free!?

Question. What is a basis free definition of being diagonalizable? Roughly, a linear map $f: V \rightarrow V$ is called diagonalizable if:

- If there exist scalars $a_{i} \in \mathbb{K}$ such that

$$
\left(f-a_{1}\right) \ldots\left(f-a_{n}\right)=0
$$

- There exists a complete orthogonal idempotent decomposition $e_{i} \in \operatorname{End}_{\mathbb{K}}(V)$ such that

$$
\left(f-a_{i}\right) e_{i}=0=e_{i}\left(f-a_{i}\right)
$$

Example. $f(x, y)=(y, x)$, a matrix for f would be $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), a_{1}=1, a_{2}=-1$

- $(f-1)(x, y)=(y-x, x-y),(f--1)(x, y)=(y+x, x+y)$, so

$$
(f-1)(f--1)(x, y)=(f-1)(x+y, x+y)=(0,0)
$$

- $e_{1}(x, y)=(x+y, x+y), e_{2}(x, y)=(x-y, y-x)$

$$
(f-1) e_{1}=0=e_{1}(f-1), \quad(f--1) e_{2}=0=e_{2}(f--1)
$$

Thank you for your attention!

I hope that was of some help.

