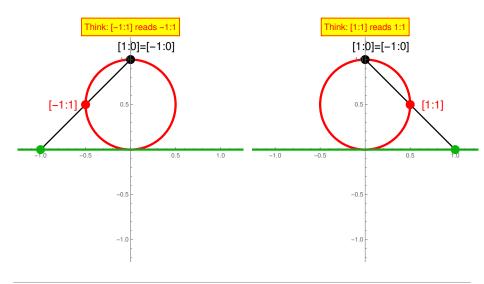

What is...a projective space?

Or: My lines cross.


That parallel lines do not cross is a "problem" of classical/affine geometry

A classical line and a projective line

Projective coordinates

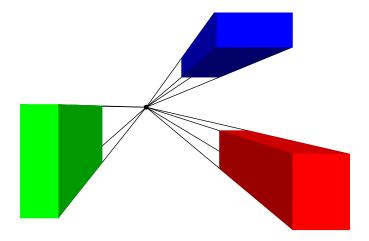
This is not quite a dimension higher – only ∞ needs the second coordinate

For a vector space V over a field \mathbb{K} the projective space $\mathbb{P}(V)$ is the set of equivalence classes of $V \setminus \{0\}$ under $v \sim w \Leftrightarrow v = \lambda w$. If $v = x_0v_0 + ... + x_nv_n$ in a basis $\{v_0, ..., v_n\}$ of V, then $[x_0 : ... : x_n]$ are the projective coordinates

Projective coordinates:
$$[x_0 : ... : x_n] = [\lambda x_0 : ... : \lambda x_n]$$

(Vector space up to scaling)

Important facts:


(a) $[x_0 : ... : x_{n-1} : 0]$ are points at infinity

(b) The points $[x_0 : ... : x_{n-1} : x_n \neq 0]$ are classical points via $[x_0/x_n : ... : x_{n-1}/x_n : 1]$

(c) $\mathbb{P}(V)$ has dim $\mathbb{P}(V) = \dim V - 1$ (Information need to determine points)

(d) Two projective lines in the same plane meet in at least one point

Projective geometry is the geometry of perspective

 ∞ is the point at the horizon

Thank you for your attention!

I hope that was helpful.