What is...an affine map?

Or: Translations in action.

Translation and shearing

A translation in 2d "is" a shearing in 3d

Affine and linear

Rotate-shrink-translate in 2d "is" rotate-shrink in 3d

Affine matrices

Just look one dimension higher!

For completeness: A formal definition.

Let $(A, V),(B, W)$ be affine spaces over a field \mathbb{K}. An affine map $\left(f, m_{f}\right):(A, V) \rightarrow(B, W)$ is a pair such that:
(a) $f: A \rightarrow B$ is a map
(b) $m_{f}: V \rightarrow W$ is a linear map
(c) We have $f(x)-f(y)=m_{f}(x-y)$

Matrix representation a.k.a. augmented matrix

$$
\left(f, m_{f}\right) \leadsto \rightsquigarrow(x)=m_{f}(x)+b \leftrightarrow\left(\begin{array}{c|c}
M & b \\
\hline 0 & 1
\end{array}\right)
$$

Affine transformations preserve lines and parallelism

Preserving lines and parallelism

This is basically why they were defined

Thank you for your attention!

I hope that was of some help.

