What is...an affine space?

Or: I lost my origin.

The intersection of affine lines

Affine spaces are the ingredients for systems of linear equations

Affine maps translate

Affine maps " $=$ " linear maps plus translation

Different origins

Different perspectives are related by translation

For completeness: A formal definition.

An affine space A over a field \mathbb{K} is a set together with a vector space V, and a free, transitive action of the additive group of V on A. Explicitly, there exists a map

$$
+: A \times V \rightarrow A,(a, v) \mapsto a+v
$$

such that:
(a) $a+0=0$ Identity
(b) $(a+v)+w=a+(v+w)$ Associativity
(c) The map $v \mapsto a+v$ is a bijection $V \rightarrow A$ for all $a \in A$ free, transitive

Affine maps are the the correct notion of maps between affine spaces:

$$
\text { affine map: } f(a+v)=f(a)+f(v)
$$

Matrices for affine maps

The point of this notation is that composition is matrix multiplication

Thank you for your attention!

I hope that was of some help.

